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IN-GAME BETTING AND THE KELLY CRITERION

ROBIN ANDERSEN, VEGARD HASSEL, LARS MAGNUS HVATTUM
and MAGNUS STÅLHANE

Abstract. When a bet with a positive expected return is available, the Kelly crite-
rion can be used to determine the fraction of wealth to wager so as to maximize
the expected logarithmic return on investment. Several variants of the Kelly cri-
terion have been developed and used by investors and bettors to maximize their
performance in inefficient markets. This paper addresses a situation that has not,
hitherto, been discussed in academic literature: when multiple bets can be placed
on the same object and the available odds, true probabilities, or both, vary over
time. Such objects are frequently available in sports betting markets, for example,
in the case of in-game betting on outcomes of soccer matches. We adapt the Kelly
criterion to support decisions in such live betting scenarios, and provide numerical
examples of how optimal bet sizes can sometimes be counter-intuitive.

1. Introduction

The task of choosing the optimal wealth allocation amongst a set of candidate secu-
rities in financial markets is usually referred to as portfolio optimization. This term
was first discussed by Markowitz [21] in a paper considered to be the foundation of
modern portfolio theory. The core of modern portfolio theory is the mean-variance
model, which rests on the assumption that an optimal portfolio can be constructed
in such a way that the financial return is maximized for a given risk level or vice-
versa. The portfolio return is here defined as a linear combination of the returns
on the individual investments and the risk coincides with the covariance matrix of
these returns.

Another approach to portfolio optimization was proposed by Kelly [15] based
on a problem in information theory. The approach is to allocate fractions of wealth
to each asset such that these fractions maximize the expected logarithmic growth
rate of the investor’s wealth. In fact, this allocation also maximizes the expected
utility for investors with a logarithmic utility function with respect to their wealth
[4,24]. This allocation is known as the Kelly criterion and does not necessarily lie
on the efficient frontier of the mean-variance model [32].

The Kelly criterion has become a popular tool in betting [16] as well as a sup-
plement for academic research on inefficiencies in betting markets. This paper is
motivated by the evaluation of odds when betting on the final outcome of a soccer
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match. In particular, we are interested in the evaluation of odds available during
the match, for in-game betting. In this setting, both available odds and true prob-
abilities may fluctuate widely over time when considering the same match. The
Kelly criterion was initially developed for binary outcomes: either a bet is won or
it is lost. It was later generalized for situations where a single object has multiple
mutually exclusive outcomes, and bets can be placed on several of the outcomes.

For the application motivating this work, the additional factor is that odds and
true probabilities change over time, and at a given point in time the bettor may
need to take into account previously placed bets when deciding how to size any ad-
ditional bets. To deal with this situation, we develop a mathematical optimization
model that can be used to determine optimal bet sizes for in-game betting. The
model is shown to be convex so that it can easily be solved using standard software
such as Excel Solver. We provide numerical examples showing how the model im-
proves on versions of the Kelly criterion that ignores past bets on the same match,
and showing how the optimal decisions are sometimes counter-intuitive.

The rest of this paper is split into five sections. Section 2 provides details of the
standard Kelly criterion for the situation with two possible outcomes. Relevant
literature is reviewed in Section 3. Section 4 first outlines a model of Kelly for
mutually exclusive outcomes and then presents a generalization of this model suit-
able for in-game betting. Illustrative numerical examples are shown in Section 5,
followed by concluding remarks in Section 6.

2. The Kelly criterion

The Kelly criterion can be used to determine an optimal bet size for a repeated
bet with only two possible outcomes: either the bet is won, returning a profit of
the net odds b times the bet size f , or the bet is lost, implying a loss of wealth
corresponding to f . With this definition of the net odds b, the decimal odds is
equal to d = b+ 1. For fair odds, that is, when a wager has an expected value of
0, the true probability is therefore p = 1/d = 1/(b+ 1).

Following [23], let Y = (Yi)N
i=1 denote a sequence of i.i.d. random variables

for event i ∈ {1, ..., N}, with Yi ∈ {0, 1}. Let p be the known probability of the
reference outcome Yi = 1. Now, assume that a bettor successively bets a fixed
proportion f ∈ [0, 1] of its initial wealth W0 on the events with net odds b. Lever-
aging is not allowed, as implied by f ≤ 1. The compounded wealth after wagering
the same fraction on all N events is then given by

WN (f,Y ) = W0(1 + fb)
∑N

i=1
Yi(1− f)N−

∑N

i=1
Yi . (2.1)

The asymptotic logarithmic return of the fixed fractional betting scheme can
then be defined as

G(f) = lim
N→∞

1
N

ln
(
WN (f,Y )

W0

)
,

which, by substitution from Equation (2.1), becomes

G(f) = lim
N→∞

1
N

ln
(

(1 + fb)
∑N

i=1
Yi(1− f)N−

∑N

i=1
Yi

)
. (2.2)

Now, the derivation of the Kelly criterion rests on the following result [17]:
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Theorem 2.1. (Strong Law of Large Numbers) Suppose X1, . . . , XN are i.i.d.
random variables, that E[Xi] = µ, and that E[|Xi|] is finite. Define XN =
1
N

∑N
i=1Xi. Then, XN converges almost surely to µ, that is

P
(

lim
N→∞

XN = µ
)

= 1.

Since the random variables in Equation (2.1) are given by Xi = (1 + fb)Yi(1−
f)1−Yi with corresponding expected value E[|Xi|] = p(1 + fb) + (1 − p)(1 − f) ∈
[1− f, 1 + fb], Equation (2.2) converges almost surely to

G(f) = ln
(
(1 + fb)p(1− f)1−p

)
by [15, Thm. 2.1]. Maximization of this function with respect to f provides the
following rule:

f∗ =
{

p(b+1)−1
b , p(b+1)−1

b > 0,
0, p(b+1)−1

b ≤ 0.

This is the Kelly criterion for the stated scenario. If short positions f < 0 were
allowed, one would bet 1−p(b+1)

b in the case where this quantity is positive [23].

3. Extant literature

This section presents existing research related to betting strategies in sports. The
emphasis is placed on the Kelly criterion based on the assumptions that bettors
act according to a logarithmic utility function. Conditional returns are fixed by
the odds in these markets, a property not shared by most financial markets. Due
to this considerable difference in nature, research considering applications of the
Kelly criterion in markets with uncertain conditional returns [35] or an unknown
probability distribution [31] is omitted.

The Kelly criterion is widely used among bettors in high-frequency games, as
the optimal logarithmic growth property of this strategy only holds in the limit
N → ∞ for the number of placed bets N [29]. The Kelly criterion presented
in Section 2 rests on the assumptions that the events corresponding to successive
bets are i.i.d. binary random variables and that the bettor has perfect information
about the probabilities in each event. The former assumption is very restrictive
and does not guarantee optimal betting on several mutually exclusive events such
as the outcome of a soccer match, which is either a home win, a draw, or an away
win. Furthermore, each side of a betting contract only holds estimates of the true
probabilities of the outcomes. Thus, some adjustments to the Kelly criterion have
been proposed for portfolio optimization in a sports betting market, some of which
are presented in the following.

MacLean et al. [19] presented a thorough examination of the existing litera-
ture on the properties of the Kelly criterion. An important property is that the
Kelly criterion is an optimal myopic strategy, meaning that the strategy is con-
stant regardless of prior and subsequent bets under the presented assumptions.
Hakansson [11] proved that this property extends to investments on dependent
events given the logarithmic utility function, while Algoet and Cover [1] showed
that past outcomes can be accounted for by maximizing the expected logarithmic
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return conditional on these outcomes. However, none of these papers considered
the task of allowing multiple bets at different times on a single outcome of a single
event.

The main disadvantage with the Kelly criterion is that its suggested wagers are
consistently larger than those implied by rational behaviour according to a log-
arithmic utility function for short investment horizons [19]. The reason is that
the mean is much more important for determining the optimal fractions than the
variance [14]. This was also indicated by Hsieh et al. [12], who considered the op-
timal frequency for updating the Kelly fractions in the case where the sequence of
games corresponds to i.i.d. random variables. They suggested that, in the absence
of transaction costs, the highest possible frequency is optimal. Another issue was
presented by Griffin [10], who suggested that, since the Kelly fractions are fixed
as a function of total wealth, the Kelly criterion may yield a lower return than
expected. This is because the unweighted geometric return rate converges to half
the arithmetic return rate.

The Kelly criterion only holds when there exists perfect knowledge of the win-
ning probability p. This has motivated a considerable amount of research con-
ducted on the topic of partial Kelly strategies, which imply shrinking the Kelly
fractions f∗ to γf∗ where γ ∈ (0, 1). MacLean et al. [20] considered the use
of these strategies for analysis of dynamic portfolio optimization in discrete time,
while Thorp [33] tested the strategies for sports betting as well as for Blackjack and
in the stock market. Furthermore, Kadane [13] showed that half-Kelly strategies,
which simply means choosing γ = 1

2 , do not optimize any utility function exactly,
but that partial Kelly strategies approximately maximize the constant relative risk
aversion utility function U(f) = 1−f1−w

w−1 by choosing f = f∗ and w = γ. Baker
and MacHale [3] examined the Kelly criterion with shrinkage when p is uncertain.
They showed that the optimal γ is a monotonically decreasing function of the
variance in the estimates of p. Yet another approach to account for uncertainty
in p is presented by Wu et al. [34], who suggested to use the historical winning
rate p̂N = number of wins

N as the estimate of p after N bets in the betting sequences.
They showed that this approach yields similar returns to the perfect information
scenario for sufficiently large N .

The extension of the Kelly criterion to multivariate portfolios is also a topic
often considered in existing research. Nekrasov [25] presented a Kelly strategy
for multivariate portfolios in the stock market based on estimates of the first and
second order moments of excess returns. Cao et al. [5] followed a similar approach,
but also proposed a partial Kelly strategy based on volatility regulation to account
for uncertainty. The performance of these approaches relies to a large extent on an
accurate estimate of the correlation matrix of the assets in question. Several others
considered the use of the Kelly criterion for betting on sports events with more
than two mutually exclusive outcomes. O’Shaughnessy [28] derived an adjusted
Kelly criterion for betting on outcomes (home win, draw, or away win) of soccer
matches on a betting exchange. This criterion accounts for taxes to be paid in
the case of a winning bet and the possibility of engaging in short positions. In
a similar manner, Noon [27] proposed a strategy for sports betting markets where
outcomes are mutually exclusive and where both short and long positions are
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allowed, showing that this strategy maximizes the logarithmic utility. Chapman
[6] evaluated the use of the Kelly criterion for spread betting, that is, distributing
bets over a range of outcomes for a continuous random variable. This topic was
also considered by Fitt [8] for the time of arrival of events in soccer matches, albeit
using the approach suggested by Markowitz [21] rather than the Kelly criterion.
Smoczynski and Tomkins [30] developed an algorithm based on the Kelly criterion
for placing bets on the winner of horse races and proved that it asymptotically
maximizes the logarithmic return rate. However, all the mentioned approaches
only consider pre-game betting.

4. Deriving an in-game Kelly criterion

In the following, a model to find optimal bets for in-game betting is derived. The
model can be used in popular fixed odds live betting markets, such as the outcome
of a soccer match. The main characteristics of this situation is that there are
several mutually exclusive outcomes, each with their own odds, and that a bettor
may have placed several bets on the same object in the past, which may influence
the optimal bet sizing for the current time being.

A model for betting on mutually exclusive outcomes is presented in Section 4.1.
Then, this is generalized for in-game betting in Section 4.2. The initial model for
mutually exclusive outcomes is based on the work by Smoczynski and Tomkins
[30].

4.1. Kelly for mutually exclusive outcomes

Smoczynski and Tomkins [30] proposed an algorithm for optimal wealth allocation
in a static betting scenario when the outcomes are mutually exclusive and no events
occur simultaneously. This approach is adapted here so that it can be generalized
to in-game betting scenarios. First, some assumptions are stated. A fundamental
requirement for the Kelly criterion to be optimal for a bettor is that the bettor acts
rationally and according to a logarithmic utility function with respect to its wealth
(A1). Furthermore, the Kelly criterion only maximizes the logarithmic growth rate
asymptotically. Thus, assume in the following that for any given matchm, a bettor
encounters a sufficiently large amount of matches Nm with i.i.d. outcomes to that
of m (A2). In addition, assume that this holds for every time instant t during any
match (A3). Assume further that the bettor can only bet on mutually exclusive
outcomes in every match (A4), that there are no transaction costs (A5), and that
there exists no lower limit on bet sizes (A6). Also, suppose that the bettor has
perfect information regarding the probabilities (A7).

Formally, take the perspective of a bettor considering the optimal wealth allo-
cation on a given match. Then, by otherwise following the notation in Section 2,
let ΩY denote the set of possible outcomes for i.i.d. Yi, i ∈ {1, . . . , N}, and let
pk ∈ (0, 1) be the known probability of outcome k ∈ ΩY . Now, assume that a bet-
tor successively makes a wager on a subset of the supplied net odds b = {bk}k∈ΩY

,
with bk ∈ (0,∞), which is fixed over all these events, by placing a fixed proportion
f = (fk)k∈ΩY

of their initial wealth W0. Furthermore, assume that neither lever-
aging (A8) nor short positions (A9) are allowed. The two latter assumptions can
be formally stated as

∑
k∈ΩY

fk < 1 and fk ∈ [0, 1), k ∈ ΩY , respectively. Then,
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the combined compounded wealth of the bettor after wagering on N matches is
given by

WN (f ,Y ) = W0
∏

k∈ΩY

(
1 + fk(bk + 1)−

∑
j∈ΩY

fj

)∑N

i=1
I(Yi=k)

, (4.1)

where I(Yi = k) is defined as 1 if the outcome of Yi was k, and 0 otherwise.
The equation follows from the fact that the bettor pays the fraction

∑
j∈ΩY

fj

regardless of the outcome of Yi, and receives the payment fk(bk + 1) if yi = k.
Now, this yields an asymptotic logarithmic growth rate

G(f) = lim
N→∞

1
N

ln

 ∏
k∈ΩY

(
1 + fk(bk + 1)−

∑
j∈ΩY

fj

)∑N

i=1
I(Yi=k)

 .

In a similar manner to the binary equivalent in Equation (2.2), and as a special
case of the in-game betting situation considered in the next section, this converges
almost surely to

G(f) =
∑

k∈ΩY

ln

(1 + fk(bk + 1)−
∑

j∈ΩY

fj)pk

 =

∑
k∈ΩY

pk ln

1 + fk(bk + 1)−
∑

j∈ΩY

fj

 (4.2)

by the strong law of large numbers. The corresponding optimization problem can
be formally stated as

(P ) maxf G(f)
subject to fk ≥ 0, k ∈ ΩY ,∑

k∈ΩY

fk ≤ 1,

1 + fk(bk + 1)−
∑

j∈ΩY

fj > 0, k ∈ ΩY .

Smoczynski and Tomkins [30] showed that P is a convex optimization problem,
and then provided an algorithm that finds the optimum of Equation (4.2).

4.2. Kelly for in-game betting

This section presents a strategy that is applicable for the case where subsequent
bets can be placed on mutually exclusive outcomes and the return is fixed condi-
tional upon the outcome. The Kelly criterion is an optimal myopic betting strategy
given (A1) when at most one bet is allowed for a single outcome of a given event.
However, for in-game betting, a bettor is not subject to this restriction. Thus,
one should account for the expected return of the previously placed bets in the
investment decisions at any given time during the lifetime of the odds. Although
the investment decision should ideally incorporate information about the expected
path of probabilities until maturity, this is outside the scope of this paper. Thus,
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the bettor is only allowed to take into account the amount already wagered when
making this decision (A10).

Now, assume that assumptions (A1)–(A10) hold, and consider a given time
t in a hypothetical sequence of N identical matches. By (A2) and (A3), the
optimization problem is equal for all these N matches. Thus, the sequence of
optimal bets made before time t in all matches are also equal and, by applying
(A2) once more, the optimization problem at t is similar in all these matches. In
other words, the optimal strategy is myopic across all N matches at a given time
t.

Before considering the mathematics of this problem, some further notation and
restrictions are required. First, let T = {1, . . . , t−1, t}, where t is the current time,
and {1, . . . , t− 1} are the previous moments in time where bets have been placed.
The supplied net odds at time l ∈ T is given as bl = {bkl}k∈ΩY

, bkl ∈ (0,∞), at
which point in time fl = (fkl)k∈ΩY

of the initial wealth W0 is wagered. Then, let

rkt =
t−1∑
l=0

fkl(bkl + 1)−
∑

j∈ΩY

fjl


denote the fixed return of bets placed at time instants {1, . . . , t−1}, where t is the
current time instant in a match, conditional on the outcome y = k. Furthermore,
let

φt =
t−1∑
l=0

∑
j∈ΩY

fjl


be the total fraction of the bettor’s initial wealth W0 wagered up until time t
during the match. Then, the no leveraging assumption (A8) implies that∑

j∈ΩY

fjt < 1− φt

must hold. Now, consider the optimization problem in the stated scenario. After
wagering on N identical matches, the wealth of the bettor is

WN,t(f ,Y ) = W0
∏

k∈ΩY

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt


∑N

i=1
I(Yi=k)

.

Then, as in the static scenario, the asymptotic logarithmic growth is

G(ft) = lim
N→∞

1
N

ln
( ∏

k∈ΩY

(
1 + rkt + fkt(bkt + 1)−

∑
j∈ΩY

fjt

)∑N

i=1
I(Yi=k)

)
:= lim

N→∞

1
N
GN (ft) (4.3)

To proceed in the same manner as earlier, it must be shown that Theorem 2.1
applies for Equation (4.3). But first, by the assumption of no allowed short posi-
tions (A9), note that

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt > 0, k ∈ ΩY , (4.4)
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must hold. In fact, this is necessary to validly state the following:

Proposition 4.1. By Theorem 2.1, G(ft) converges almost surely to∑
k∈ΩY

pkt ln
(

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY
fjt

)
.

Proof. Let Xi(ft) = ln
(∏

k∈ΩY

(
1 + rkt + fkt(bkt + 1)−

∑
j∈ΩY

fjt

)I(Yi=k)
)
.

Then, since ln(a
∑N

i=1
Yi) = (

∑N
i=1 Yi) ln(a), we have GN (ft) =

∑N
i=1Xi(ft). Now:

E[|Xi(ft)|] =

∣∣∣∣∣∣
∑

k∈ΩY

pkt ln

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt

∣∣∣∣∣∣ .
By Equation (4.4), the fact that the odds are finite and positive, and since

pkt ∈ (0, 1), k ∈ ΩY , while | ln(a)| <∞ for a > 0, it follows that E[|Xi(ft)|] <∞.
Thus, by Theorem 2.1, 1

NGN (ft) converges almost surely to

∑
k∈ΩY

pkt ln

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt

 .

�

From this result, the asymptotic logarithmic growth rate is given by

G(ft) =
∑

k∈ΩY

pkt ln

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt

 . (4.5)

Given the stated assumptions and Equation (4.5), the optimization problem in
question can be defined formally as

(∗) max
ft

G(ft),

subject to fkt ≥ 0, k ∈ ΩY , (A)∑
k∈ΩY

fkt < 1− φt, (B)

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt > 0, k ∈ ΩY . (C)

The stated constraints are labelled as (A), (B), and (C) for later reference. The
difficulty of obtaining optimal fractions to wager depends on the complexity of
the optimization problem stated above. We intend to show that this is an easy
optimization problem, in the sense that it is a convex problem, implying that any
locally optimal solution is a global optimum.

First, let us recall some definitions and known results. The definitions of a con-
cave function and a convex set are given by Lundgren et al. [18, pp. 30–31]:

Definition 4.2. A set X ⊆ Rn is a convex set if for any pair of points
x(1),x(2) ∈ X and 0 ≤ λ ≤ 1 we have

x = λx(1) + (1− λ)x(2) ∈ X.
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Definition 4.3. The function g(x) is a concave function on a convex region X
if for all choices of points x(1),x(2) ∈ X and 0 ≤ λ ≤ 1 we have that f(λx(1) +
(1− λ)x(2)) ≥ λf(x(1)) + (1− λ)f(x(2)).

If g(x) satisfies a strict inequality in Definition 4.3, it is a strictly concave
function. Next, if a function g(x) is concave, then the function f(x) = −g(x)
is convex [18, p. 30]. Furthermore, the following theorem states that a linear
combination of convex functions is a convex function [18, p. 248]:

Theorem 4.4. If f1(x), f2(x), . . . , fp(x) are convex functions and we have
λk ≥ 0, k = 1, . . . , p, then the function f(x) =

∑p
k=1 λkfk(x) is convex.

Based on the two latter results, if fk(x) = −gk(x) for k ∈ {1, ..,K}, and
g1(x), . . . , gK(x) are all concave and f(x) is defined as in Theorem 4.4, the fol-
lowing holds:

g(x) =
p∑

k=1
λk

(
gk(x)

)
=

p∑
k=1

λk

(
− fk(x)

)
= −

p∑
k=1

λkfk(x) = −f(x) concave.

Now, the definition of a convex maximization problem is given by Lundgren et
al. [18, p. 29]:

Definition 4.5. A maximization problem (P )
max
x∈X

g(x)

is convex if X is a convex set and g(x) is concave on X.
If a maximization problem (P ) is convex, then each local maximum is also

a global maximum. If g(x) is strictly concave, then the maximum is also unique
[18, p. 245]. Lastly, note that the following holds [7, p. 8]:

Theorem 4.6. An intersection of convex sets is itself a convex set.
To show that (∗) is convex, it suffices to show that the feasible region R∗ is

convex and that the objective function G(ft) is concave on R∗ by Definition 4.5.
This is shown below.

Proposition 4.7. The feasible region R∗ defined by constraints (A), (B), and
(C) is a convex set.

Proof. First, let RC = {ft ∈ R|ΩY | : ft satisfies (C)}. Since RC is the
intersection of the sets RC

k = {fkt ∈ R : 1 + rkt + fkt(bkt + 1) −
∑

j∈ΩY
fjt > 0},

then it suffices to show that RC
k is convex for an arbitrary k ∈ ΩY to validly claim

that RC is convex by Theorem 4.6. Thus, let f1
kt, f

2
kt ∈ RC

k for some arbitrary
k ∈ ΩY , and let λ ∈ [0, 1], where f1

kt, f
2
kt, λ is chosen arbitrarily. Then,

1 + rkt + (λf1
kt + (1− λ)f2

kt)(bkt + 1)− λ
∑

j∈ΩY

f1
jt − (1− λ)

∑
j∈ΩY

f2
jt

= λ(1 + rkt + f1
kt(bkt + 1)−

∑
j∈ΩY

f1
jt) + (1− λ)(1 + rkt + f2

kt(bkt + 1)−
∑

j∈ΩY

f2
jt)
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> λ0 + (1− λ)0 = 0, so λf1
kt + (1− λ)f2

kt ∈ RC
k .

Thus, by Definition 4.2, RC
k is convex, and RC =

⋂
k∈ΩY

RC
k is convex, since k

was chosen arbitrarily. Consider similarly RB = {ft ∈ R|ΩY | : ft satisfies (B)}.
Now,
λ
∑

k∈ΩY
f1

kt + (1 − λ)
∑

k∈ΩY
f2

kt < λ(1 − φt) + (1 − λ)(1 − φt) = 1 − φt, so
λf1

t + (1 − λ)f2
t ∈ RB for any f1

kt, f
2
kt ∈ RB and λ ∈ [0, 1]. Thus, RB is also

convex by Definition 4.2.
Finally, define RA = {ft ∈ R|ΩY | : ft satisfies (A)}. By the same argument,

the set of fractions RA of ft satisfying (A) is also convex since λ
∑

k∈ΩY
f1

kt +(1−
λ)
∑

k∈ΩY
f2

kt ≥ λ0 + (1− λ)0 = 0 for any f1
kt, f

2
kt ∈ RA and λ ∈ [0, 1].

Now, since R∗ is the intersection of the convex sets RA,RB ,RC , then it is also
convex by Theorem 4.6. �

Proposition 4.8. The function G(ft) is convex on R∗.

Proof. To show that this proposition holds, define

gk(ft) = ln

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt

 .

Consider RC defined above. A basis of the proof is that gk(ft) is concave on RC

for any k ∈ ΩY . This follows directly from the fact that ln(a) is strictly concave
on its entire domain R>0, and that 1 + rkt + f1

kt(bkt + 1)−
∑

j∈ΩY
f1

jt > 0 for any
k ∈ ΩY and any ft ∈ RC .

Thus, by Theorem 4.4, G(ft) =
∑

k∈ΩY
pktgk(ft) is also concave on RC , as

pkt > 0, k ∈ ΩY .
Now, it suffices to show that this implies that G(ft) is concave on R∗. Note

that since R∗ is the intersection of RA,RB ,RC , then R∗ ⊆ RC . Hence, since R∗
is itself convex, we have that
λf1

t + (1 − λ)f2
t = f̃t ∈ R∗ for any f1

t ,f
2
t ∈ R∗ ⊆ RC and any λ ∈ [0, 1] by

Definition 4.2.
But then, since G(ft) is strictly concave on RC , and f̃t = λf1

t + (1 − λ)f2
t ∈

R∗ ⊆ RC for any f1
t ,f

2
t ∈ R∗ and any λ ∈ [0, 1], it is also strictly concave on

R∗. �

As stated, since (∗) is a convex problem with G(ft) strictly convex, then any lo-
cal optimum of G(ft) on R∗ is also a global optimum. However, to guarantee that
a global optimum exists, the Weierstrass theorem [2] states that the objective func-
tion must be continuous and that the feasible region must be closed and bounded.
To see that the objective function (4.5) is continuous, we note that sums and prod-
ucts of continuous functions are continuous, and that compositions of continuous
functions are continuous when defined on the appropriate domains [22]. Since ln(x)
is a continuous function for x > 0, and since 1+rkt +fkt(bkt +1)−

∑
j∈ΩY

fjt > 0,
it follows that G(ft) is continuous. To ensure that the feasible region is closed
and bounded, the strict inequality restrictions (< and >) must be replaced by
non-strict versions (≤ and ≥) while shifting the right hand sides by a small value
ε:
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(∗∗) max
ft

G(ft),

subject to fkt ≥ 0, k ∈ ΩY , (A)∑
k∈ΩY

fkt ≤ 1− φt − ε, (B)

1 + rkt + fkt(bkt + 1)−
∑

j∈ΩY

fjt ≥ ε, k ∈ ΩY . (C)

The parameter ε simply prevents the investor from exhausting all funds, irre-
spective of the final outcome of the investments. With this modification, a unique
optimal solution exists, and thus, the problem can be solved to optimality in a rea-
sonable time for in-game betting purposes by a suitable optimization algorithm
[26].

As a final note, no matches are assumed to be played simultaneously in this ap-
proach. The proposed framework can be further extended to account for bets on E
simultaneous events given that (A2) and (A3) hold for all such sets of simultaneous
events. This can be done by altering Equation (4.1) to

WE
N,t ((fe,Ye)e∈Ωe

) =

W0
∏

e∈Ωe

∏
k∈ΩY

(
1 + rkte + fkte(bkte + 1)−

∑
j∈ΩY

fjte

)∑N

i=1
I(Yie=k)

(4.6)

where Ωe = {1, 2, . . . , E}. However, this approach is not pursued further here.

5. Illustrative examples

This section presents some numerical examples intended to show how the in-game
Kelly model is necessary when prior bets are already active. The first example also
includes the basic Kelly criterion to illustrate that it is not sufficient when dealing
with multiple mutually exclusive outcomes. In all the examples, calculations are
performed using the software Excel. For the two mathematical models, the in-
built Solver tool is used to find the optimal solution using the generalized reduced
gradient method [9]. For the in-game model, a value of ε = 10−6 is used.

All the examples are based on betting on the outcome of a soccer match, hav-
ing the three possible outcomes: home win (H), draw (D), and away win (W).
Throughout, the known true probabilities are pH = 0.5, pD = pA = 0.25. To break
even, bets on these outcomes require decimal odds of dH = 2.0, dD = dA = 4.0,
respectively.

5.1. Failure of basic Kelly

If decimal odds are provided as dH = 2.2, dD = dA = 3.5, the true probabilities
indicate that betting on a home win is profitable. Using the fact that bk = dk− 1,
the Kelly criterion can be applied to any of the three available bets separately.
Since only one of the possible bets is profitable, the basic Kelly and the model for
mutually exclusive bets provide the same decision: place a bet equal to fH = 8.3%
of your total wealth on the home win.
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However, if decimal odds are given as dH = 2.2, dD = 4.2 and dA = 3.0, two of
the possible bets are profitable for the bettor. Standard Kelly cannot handle this.
If we apply the criterion to each bet separately, violating one of the assumptions
of the basic criterion, we find bet sizes of fH = 8.3%, fD = 1.6%, and fA = 0%.
However, this only gives an expected growth rate of G = 0.6%, whereas the model
for mutually exclusive bets suggests fH = 13.0%, fD = 5.6%, and fA = 0%, giving
an expected growth rate of G = 0.8%.

5.2. Failure of model for mutually exclusive outcomes

Let us assume that the model for mutually exclusive outcomes was used pre-game
to place bets in the previous example, leading to optimal bet sizes of fH = 8.3%,
fD = 1.6%, and fA = 0%. Assume that some time has passed. In this period,
while the true probabilities have not changed, live decimal odds have moved to
dH = 2.2, dD = 3.0 and dA = 4.2. If the model for mutually exclusive outcomes
is used again, thereby violating one of its assumptions, it would suggest to place
new bets of fH = 13.0%, fD = 0%, and fA = 5.6% of the total wealth. This would
lead to an expected growth rate of G = 1.8% according to the in-game model.

The in-game model, however, uses the fact that some bets have already been
placed on the same object, and suggests the additional bet sizes fH = 11.0%,
fD = 0%, and fA = 11.4%, yielding an expected growth rate of G = 2.4%. This
shows that profitable betting opportunities can be exploited to a larger extent
when explicitly considering already placed bets on the same betting object.

5.3. Correcting too large bets

Consider again the example with dH = 2.2, dD = dA = 3.5. All the three models
agree that the optimal bet is to place fH = 8.3% on a home win, for an expected
growth rate of G = 0.4%. Let us assume that the bettor makes a mistake and
instead places a double bet equal to fH = 16.7% on a home win. Such a bet
has a growth rate of G = 0%. Using the in-game betting model after placing the
wrong bet, it suggests that the bettor can improve the position slightly by placing
additional bets with negative expectations. In particular, optimal additional bets
of fD = fA = 2.2% improve the expected growth rate to 0.07%.

5.4. Correcting bets on wrong odds

In the same setting as the previous example, let us now consider that the bettor
places the correct bet size fH = 8.3%, but accidentally places the bet at an odds
of dH = 2.1 instead of the available dH = 2.2. This leads to an expected growth
rate of G = 0.03%, rather than G = 0.4%. If the odds of dH = 2.2 is still available,
perhaps at a different bookmaker, the in-game model suggests that the situation
can be improved by placing an additional bet of fH = 0.3%. This small additional
bet would increase the expected growth rate to G = 0.035%.

5.5. Regular in-game betting

The standard use of the in-game model is when making bets over time as both true
probabilities and odds are moving. As before, let us assume that the game starts
with true probabilities pH = 0.5, pD = pA = 0.25 and available odds dH = 2.2,
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dD = dA = 3.5, leading to an initial bet of fH = 8.3% on the home win. Later
in the game, the true odds have evolved to pH = 0.8, pD = 0.15, and pA = 0.05.
Fair odds are therefore dH = 1.25, dD = 6.7, and dA = 20.

Assume that the available odds are still slightly underestimating the probability
of a home win: dH = 1.3, dD = 5.0, and dA = 15.0. The current expected growth
rate, given the initial bet, is G = 5.88%. Placing an additional bet on a home
win has a positive expected value. However, the in-game model can be used to see
that the optimal decision for the bettor is to place no additional bets.

Continuing the example, assume that the true probabilities remain as above,
and that the market odds have moved to match the true probabilities, but with
a margin for the bookmaker: dH = 1.2, dD = 6, and dA = 18. In this case, even
though there are no value bets available, the in-game model suggests to reduce the
risk by placing some small bets on the draw and the away win: fD = 0.8% and
fA = 0.3%. These bets slightly increase the expected growth rate from G = 5.88%
to G = 5.90%.

6. Concluding remarks

This work was motivated by the determination of optimal bet sizes when wagering
in live betting markets such as in-game betting on the final outcome of a soccer
match. While the Kelly criterion is frequently used to determine bet sizes by
gamblers and in academic studies of market inefficiencies, it must be adapted to
work in a setting where prior bets have been placed on a given object. To this
end, we proposed a mathematical optimization model that is convex and can be
easily solved to optimality using standard software.

In several numerical examples, we showed that the model can be a useful tool
for bettors. The model can also be used to evaluate market efficiency for in-game
betting markets. However, as the model assumes that the bettor is only placing
bets on one match object at a time, further extensions are necessary if the same
approach is to be used when betting on multiple simultaneous matches.
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