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MULTI-STAGE FAULT WARNING

FOR LARGE ELECTRIC GRIDS USING ANOMALY

DETECTION AND MACHINE LEARNING
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Abstract. In the monitoring of a complex electric grid, it is of paramount impor-

tance to provide operators with early warnings of anomalies detected on the network,
along with a precise classification and diagnosis of the specific fault type. In this

paper, we propose a novel multi-stage early warning system prototype for electric
grid fault detection, classification, subgroup discovery, and visualization. In the

first stage, a computationally efficient anomaly detection method based on quar-

tiles detects the presence of a fault in real time. In the second stage, the fault is
classified into one of nine pre-defined disaster scenarios. The time series data are

first mapped to highly discriminative features by applying dimensionality reduction

based on temporal autocorrelation. The features are then mapped through one of
three classification techniques: support vector machine, random forest, and artificial

neural network. Finally in the third stage, intra-class clustering based on dynamic

time warping is used to characterize the fault with further granularity. Results on
the Bonneville Power Administration electric grid data show that i) the proposed

anomaly detector is both fast and accurate; ii) dimensionality reduction leads to

dramatic improvement in classification accuracy and speed; iii) the random forest
method offers the most accurate, consistent, and robust fault classification; and iv)

time series within a given class naturally separate into five distinct clusters which

correspond closely to the geographical distribution of electric grid buses.

1. Introduction

Electric grids are of vital importance in the infrastructure of modern society, serv-
ing to ensure the continuous supply of electricity to households and industries.
Grid failures lead to significant financial losses for companies and inconvenience
for consumers and maintenance personnel. Automatic monitoring of large complex
electric grids has thus received considerable attention from the research commu-
nity in recent years. Many authors have addressed this challenging problem from
a variety of angles using a combination of tools from computer science, electrical
engineering, statistics, machine learning and artificial intelligence. In this work we
present a novel multistage system using statistical anomaly detection and machine
learning techniques to detect, classify, and diagnose electrical faults. While our
methodology is applicable to any general time series data, we use the Bonneville
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Power Administration (BPA) dataset to develop and evaluate our techniques. The
BPA electric grid comprises 126 distinct stations or buses, and spans the states
of Washington and Oregon. Our dataset is represented as a collection of 126
time series, one for each station, and each time series contains 1800 observations
corresponding to 60 seconds of data at a sampling rate of 30 Hz. Three sets of
observations are available, namely frequency, voltage, and phase angle metrics.

Stations in a power grid can fail in several distinct ways. Each failure scenario is
characterized by unique time-varying frequency, voltage, and phase angle profiles,
and entails specialized reparation by operators. We will refer to these scenarios
as fault classes. In the BPA dataset, each time series represents the occurrence of
exactly one fault over the specified time period. The dataset contains 16 labeled
fault classes corresponding to commonly encountered failures. We possess 126
instances of each fault class corresponding to the 126 stations in the BPA grid, for
a total of approximately 2000 data instances. Of the 16 fault classes, several were
observed to exhibit near identical temporal behavior. To simplify our classification
models and avoid overfitting, highly overlapping fault classes were merged. The
criteria for fault merging was visual inspection of the frequency, voltage, and phase
angle time series. The result is the following nine fault class labels: Dropped
Load, Open AC, Open DC, Open Generator, GMD 2, Ice Storm, McNary Attack,
Ponderosa, and Quake 1. Our goal is to automatically identify and communicate
the presence and type of fault in real time so that preemptive action can be taken.

Figure 1 depicts typical frequency time series for the Ice Storm and Dropped
Load fault classes. The temporal characteristics for these fault types are visibly
different.

Figure 1. Frequency time series of Ice Storm and Dropped Load faults.

Recent literature on fault detection and analysis in electric grid systems has
largely focused on machine learning approaches [1–8]. Notably, in [5] a control
system approach involving micro-controllers and other electrical equipment was
introduced to monitor faults based solely on current fluctuations. In [6] and [7],
a fault detection method was combined with classification by an Artificial Neural
Network. In [8], a Long-Short Term Memory (LSTM) neural network architecture
was proposed to perform fault classification. To our knowledge, investigations
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exploring random forests or support vector machines, models which are compu-
tationally efficient and provide high classification accuracy, are relatively sparse
in the literature. Dimensionality reduction and feature selection techniques to
reduce computational cost are also not well-developed. Furthermore, subgroup
discovery within a fault class using unsupervised learning has not been attempted.
Our work is thus novel in that it combines traditional statistical methods such as
anomaly detection with advanced machine learning, dimensionality reduction, and
visualization, into a cohesive system for real-time fault diagnosis and prediction.

Prior work by the authors on BPA-specific electric grid data has focused almost
exclusively on visualization and exploratory analysis [9]. This included identifying
the Gaussian nature of the distribution of electric frequency measurements across
the grid at a specific time point, and generating heat maps of the rate of change of
grid parameters across stations. All of the aforementioned analysis was performed
for one specific class. In this work, we progress further by analyzing data across
multiple classes to develop a warning system that is both highly accurate and
computationally efficient, rendering it feasible for expedited implementation at
a grid scale.

The rest of this paper is organized as follows: Section 2 provides an overview
of the proposed multi-stage fault warning system. Section 3 describes the first
stage of the system, namely dynamic anomaly detection. Section 4 presents di-
mensionality reduction and three fault classification methods. Section 5 describes
intra-class clustering. Experimental results are presented in Section 6, and con-
cluding remarks are given in Section 7.

2. Overview of early warning system

We present a framework on which to build a real-time early warning system for
BPA electric grid failures, depicted in Figure 2. The 126 BPA electric grid sta-
tions each produce observations for frequency, voltage, and phase angle. We rep-
resent the time series for a station s from time t = 1 to t = T as a vector
Xs = (Xs,1, · · · , Xs,t, · · · , Xs,T ), where each Xs,t can be a frequency, voltage, or
phase angle measurement.The T-dimensional vectors Xs are the inputs to the early
warning system.

In Stage 1, we perform dynamic anomaly detection on the time series. The
results, along with those of the other buses, can be visualized on a heat map. If
n consecutive anomalous time points (i.e. outliers) are detected in Xs, where n
is an experimentally determined threshold, we assume a fault has occurred, freeze
further input to the system from that station, and proceed to Stage 2. Otherwise,
we wait n

30 seconds (corresponding to a sampling frequency of 30 Hz), receive the
latest time series, and conduct Stage 1 analysis again.

In Stage 2, we perform dimensionality reduction on Xs to produce a compact
representation xs of the time series. We then pass this representation into a clas-
sifier (trained offline) to determine the predicted fault class of the time series from
a total of 9 possible classes.

In Stage 3, having identified the fault class of xs, we perform clustering of data
within each class with the aim of gathering insight on the source and severity of
a given fault type.
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Figure 2. Diagram of proposed early warning system. The main components of the process are

outlier detection, dimensionality reduction, fault classification, and intra-class clustering.

Each of the stages are described in more detail in the following sections.

3. Dynamic anomaly detection

We employ a simple, robust, and computationally efficient criterion for detecting
the presence of anomalous time points or outliers in the electric grid time series
data. For a given station s, we map its frequency, voltage, or phase angle time
series Xs to an outlier vector Os of the same length. For each time point Xs,t in
Xs, we declare the point a moderate outlier if the following condition holds:

Xs,t > Q3 + 1.5× IQR or Xs,t < Q1 − 1.5× IQR

where Q1 and Q3 are the first and third quartile of Xs,1,··· ,t respectively, and IQR

is the interquartile range of Xs,1,··· ,t. If this condition is true, Os,t is set to 1. If
the following condition holds:

Xs,t > Q3 + 3× IQR or Xs,t < Q1 − 3× IQR

the time point is considered a severe outlier and the value of Os,t is set to 2. If
neither of the above two conditions are true, the point is not considered an outlier,
and Os,t is set to 0.

We thus generate in real time a ternary outlier vector Os,t describing anomaly
state as the frequency, voltage, or phase angle measurements from a bus are re-
ceived. Only time series that exhibit a number of consecutive anomalous observa-
tions are passed to the fault classification stage.

4. Fault classification

We use supervised learning techniques to classify the electric grid time series into
one of the nine labeled fault classes. As a first step we extract compact features
from the raw electrical time series via a dimensionality reduction step, described
next.
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4.1. Dimensionality reduction

A crucial aspect of any classification task is identifying discriminative features of
the data on which to perform classification. Raw data often disguises these features
and contains considerable redundancy, reducing the accuracy and efficiency of
classification. We opt to use the autocorrelation (ACF) function to produce a time-
invariant, compact feature representation of the data. ACF returns a vector of
values between −1 and 1 representing the correlation of a time series with lagged
copies of itself. Note that the ACF output has constant, specified dimensionality
regardless of the dimensionality of the input.

Since ACF is only meaningful on stationary time series, we conduct first-order
differencing of the time series Xs to ensure stationarity. The differenced time series
X̂s is given by:

X̂s,t = Xs,t −Xs,t−1, for t = 2, · · · , T, with X̂s,1 = 0.

The autocovariance function at lag h is:

γs(h) = cov(X̂s,t+h, X̂s,t)

= E
[
(X̂s,t+h − µs)(X̂s,t − µs)

]
.

The corresponding autocorrelation function is:

ρs(h) =
γs(h)

γs(0)
= corr(X̂s,t+h, X̂s,t).

For electrical data from a given substation, and for a fixed lag h, we obtain a scalar
autocorrelation value. By computing this value for K different lags, we obtain a K-
dimensional feature vector denoted xs which is then used as input to the classifiers
described next.

4.2. Classification techniques

The input to the classifier is feature xs ∈ RK , and the output is a label ys cor-
responding to one of nine fault classes. We applied three well known machine
learning methods to classify BPA data. We now briefly present these techniques,
deferring the reader to the respective references for more detailed descriptions.

4.2.1. Support vector machine. A Support Vector Machine (SVM) is a su-
pervised learning method for data classification tasks [10]. Given a set of training
data with class labels, SVM learns hyperplanes (i.e. linear decision boundaries)
that optimally divide the data by class. A test point is then assigned to a class
based on which side of the hyperplane it falls into. SVM handles more complex
classification problems with nonlinear decision surfaces by first transforming in-
put vectors through a nonlinear mapping to a very high-dimensional feature space
prior and constructing linear hyperplanes in this space. The derivation of the
hyperplane is outside the scope of this paper (see [10]); we simply note that the
parameters of the hyperplane depend only on a few support vectors, xsj which are
in effect the data points closest to the decision boundary. SVM is well-suited to
classification of high-dimensional, sparse data, and is fast to execute, making it an
apt technique for classifying BPA electric grid data.
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For illustration consider a 2-class problem with inputs xs and output class labels
+1 and −1. The SVM classifier is expressed by the following equation:

f̂(xs) = sign

 N∑
j=1

α̂sjysjK(xsj ,xs) + b̂


where xsj are N support vectors, K is a kernel function that takes the input

samples into a high-dimensional space, and α̂sj and b̂ are the parameters of the
separating hyperplane learned during training. The binary classification problem
can be readily extended to multiple classes [10].

4.2.2. Random forest. Random Forests (RF) enable a probabilistic ensemble
learning method for data classification [11]. The basic block of an RF is a decision
tree which recursively splits the K-dimensional feature space until a partition of
P classes is produced (in our application, P = 9). In the case of a binary deci-
sion tree, each node of the tree splits the K-dimensional space into two partitions.
Repeated splits are performed until the P -sized partition is achieved. The param-
eters of the splits are optimized during a training phase to minimize an overall
classification error. One of the shortcomings of decision trees is that they tend
to overfit on training data. To mitigate this issue, the RF algorithm aggregates
decisions from multiple decision trees. Essentially an RF is comprised a forest of
trees, whereby each tree is learned from a random sample of the training data,
and the optimal split at each node of a tree is chosen from a random sample of
the features of the training data. The output of the RF classifier is the mode
(i.e. majority vote) of the class labels predicted by the individual trees, along
with a probability of the predicted class membership. Due to the feature diversity
offered by a large collection of trees, RF classifiers are generally robust to over-
fitting, an important consideration for a task such as electrical fault classification
with potentially complex decision boundaries.

4.2.3. Artificial neural network. An artificial neural network (ANN) is a group
of interconnected nodes organized into layers: an input layer with one node for
each input feature, several hidden layers, and an output layer with one node for
each possible output [12]. Every inter-node connection in the network carries an
associated weight and a function that maps an input to a known output.

The computations at the single node of Figure 3 are given by:

η(x) = oj = fj(βj +
∑
i

wjixi)

where βj is a learnable scalar bias term. An ANN combines multiple nodes in
multiple cascaded layers to realize arbitrarily complex classification and regression
functions. Several choices exist for the activation function, such as the logistic
sigmoid function:

ψ(z) =
1

1 + e−z

and hyperbolic tangent function:

ψ(z) = tanh(z) =
ez − e−z

ez + e−z
=

1− e−2z

1 + e−2z
.
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We choose the hyperbolic tangent function due to its favorable convergence prop-
erties.

During training, the network weights wji are first initialized, usually with ran-
dom coefficients. The network processes training samples one at a time, comparing
the predicted output of the network to the ground truth. This comparison yields
an error that is back-propagated through the system, and the node connection
weights wji are adjusted to minimize training error. This process iterates until
convergence (see [12] for a detailed overview of ANN training). ANN classifiers are
highly tolerant to noisy data and can learn arbitrarily complex decision bound-
aries, an important criterion for multinomial classification. In our experiments,
we employ a 3-layer ANN, whose details are given in Section 6.

5. Intra-class unsupervised learning

Individual stations in an electric grid can respond differently to a given fault based
on geography, size, staffing, and a number of other factors. We use unsupervised
learning techniques, namely time series clustering, to discover meaningful sub-
groups of grid stations within a fault type. These subgroups could potentially
correspond to varying severity of a fault or other differentiating factors. With
intra-class analysis, grid operators gain access to more granular information such
as specific geographical areas that have been affected most severely and require
immediate intervention. While the fault classifier in the previous stage operates
on a compact ACF representation xs, in this stage we operate on the original raw
time series Xs to uncover temporal structure within each class.

Prior to clustering, we normalize the time series so that all values are in the
range of [0, 1]. Normalization augments the disparity between times series, allowing
for greater clustering acuity.For each Xs,t in a time series Xs, the normalized value
XN

s,t is given by

XN
s,t =

Xs,t −minXs

maxXs −minXs
.

5.1. Dynamic time warping

Any clustering technique requires a metric that defines distance between samples.
Since we are dealing with time series, we use dynamic time warping (DTW) [13] to
compute the similarity (or distance) between two temporal sequences. To briefly
review DTW, given two time series U and V of length m and n, respectively, an m
x n distance matrix D is constructed with elements Dij representing the pairwise
distance between points Ui and Vj . Euclidean distance is commonly used, such
that

Dij =
√

(Ui − Vj)2.

A warping path w is defined as a contiguous sequence of k matrix elements that
satisfies the following two conditions:

(1) Boundary conditions: w1 = (1, 1) and wk = (m,n);

(2) Continuity and monotonicity: if wi = (a, b) then wi−1 = (a
′
, b

′
) where 0 ≤

a− a′ ≤ 1 and 0 ≤ b− b′ ≤ 1.
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The cost of the path is defined as the sum of the elements (distances) traversed
by the path. DTW seeks the path with minimum cost, the latter being the DTW
distance between the two sequences. DTW is often sped up by limiting the set of
valid paths to a limited region of matrix D around the diagonal.

5.2. Partitioning around medoids

Given a distance metric, we next proceed to cluster the data using the Partitioning
Around Medoids (PAM) algorithm [14]. PAM is a variant of the well-known K-
means clustering algorithm [15]. However instead of representing each cluster with
its centroid as is done in K-means, PAM represents each cluster with an exemplar
data point, referred to as the medoid (or “middle point”). More crucially, PAM
admits more general distance metrics, in contrast to K-means which uses only
squared Euclidean distance. Hence PAM is favorable for our application where
DTW defines distances between time series.

With the task of partitioning the data in a given fault class into L clusters,
PAM proceeds as follows:

(1) Select L out of the data points as initial medoids;
(2) Associate each data point with the closest medoid, with distance measured

by DTW;
(3) Compute the total cost, which is the sum of distances of points to their

assigned medoids;
(4) While the total cost decreases:

(a) For each medoid m and for each non-medoid sample d
(i) Swap m and d, reassign all points to the closest medoid and

compute total cost;
(ii) If the total cost increased in the previous step, undo the swap.

6. Experimental results

We now present results for the BPA data. We used the R statistical language [16]
to develop all the analysis. Recall that the data contains 126 time series Xs, one
for each station in the BPA grid. Most time series contain 1802 time samples,
corresponding to just over 60 seconds of frequency, voltage, or phase angle data
at a sampling rate of 30 Hz, while a few time series are longer, containing up to
3000 samples. In preliminary experiments, we found frequency observations to
be more discriminative for fault classification than voltage and phase angle; thus
frequency data was used for all experiments. Any further mention of time series
refers specifically to frequency time series.

6.1. Anomaly detection

Applying our quartile criterion to detect outliers in the frequency data, we found
that the onset of a fault is characterized by approximately 70 consecutive severe
outliers followed by a return to normalcy due to the self-adjusting nature of the
outlier detection criterion. This is depicted in Figure 3.

Based on this signature of fault onset, we propose setting our early warning
system outlier threshold at 70. In other words, when we detect 70 consecutive
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.

Figure 3. Outlier vector for Dropped Load and Open AC faults generated using quartile crite-

rion. Faults are reliably characterized by a sudden spike of 70 anomalous time points.

outliers relative to the accepted 60 Hz frequency value, we assume a fault has
occurred and proceed to the second stage for more detailed classification.

We also used the outlier vector to generate an intuitive visualization of the BPA
electric grid, shown in Figure 4. The colors of the scatter plot correspond to the
sum of the last 40 values of the outlier vector Os for a given station (ranging from
0-80). This provides unique insight into the location and severity of the fault, and
can be updated in real-time to provide operators a live picture of the health of the
grid.

6.2. Dimensionality reduction

We conducted first-order differencing of the frequency series and applied the ACF
function to obtain a compact representation. The maximum number of lags we
used was 20. ACF thus condenses our raw data Xs containing 1800 to 3000 time
points to a time-invariant 20-dimensional feature vector xs. Figure 5 shows the
ACF feature vector of the differenced frequency series for the Icestorm and Dropped
Load faults.

We performed an ablation study to determine the accuracy of SVM classifica-
tion with and without dimensionality reduction. Using the original frequency data
with 1802 dimensions, it took 21.2 seconds to train an SVM classifier on 1602 ex-
amples, and 2.29 seconds to predict the fault class of 399 test time series, with 53.8
percent of test samples being labelled correctly. Using the 20-dimensional ACF
representation on the same training and test data, training took 0.25 seconds,
testing took 0.031 seconds, and there was a dramatic increase in classification ac-
curacy to 96.0 percent. Clearly, ACF dimensionality reduction results in a highly
discriminative, compact representation, allowing for real-time, accurate classifica-
tion that cannot be accomplished using raw data. We also experimented with the
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Figure 4. Severity of Icestorm fault across BPA electric grid stations.

Figure 5. Autocorrelation feature vector for differenced frequency series corresponding to

Icestorm and Dropped Load faults.

partial autocorrelation function [17] and spectral periodogram [18] obtained via
a Fast Fourier Transform and found that both methods were inferior to the ACF
in terms of discriminability, classification accuracy, and robustness to inputs of
varying dimensions.

6.3. Fault classification

We applied the three classification models introduced above to the task of clas-
sifying the BPA time series into nine fault scenarios. The two fault classes that
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were a result of consolidation contained approximately 500 data examples each,
while the others contained 126 examples each corresponding to the 126 buses in
the BPA electric grid.

6.3.1. Support vector machine. We used the radial basis function with a gam-
ma value of 0.05 as our SVM kernel. We set our soft margin cost parameter
to 1. Out of a total of 2001 data examples, 80 percent (1602) were used to
train the classifier, and the remaining 20 percent (399) were reserved for testing.
The training input to the classifier was a set of 20-dimensional ACF vectors of
first-order differenced time series along with corresponding fault class labels. At
inference, the input to the classifier was an ACF vector, and the output was the
predicted fault class. The mean classification accuracy of the SVM classifier on
the testing data, calculated over 100 trials on different training-testing splits, was
97.2 percent.

6.3.2. Random forest. We implemented an RF classifier with 500 trees, de-
termined to be optimal from hyperparameter tuning. The same protocols used
for training and evaluating the SVM classifier were also used for the RF classi-
fier. The mean classification accuracy of the RF classifier on the testing data,
calculated over 100 trials on different training-testing splits, was 98.9 percent.

Figure 6. Artificial neural network for fault classification.

6.3.3. Artificial neural network. We implemented the ANN classifier depicted
in Figure 6. The network consists of an input layer of 20 nodes corresponding to
the 20-dimensional ACF vector, a single hidden layer of 5 nodes, and an output
layer of 9 nodes for each target fault class. The same protocols used for the pre-
vious classifiers were used to train and evaluate the ANN. The mean classification
accuracy calculated over 100 trials on different training-testing splits was 97.8
percent.

6.3.4. Comparison of classifiers. Figure 7 compares histograms of accuracy
scores for the three classifiers. Each classifier was run 100 times, with each it-
eration using a unique train-test split stratified by fault type. We note that the
classification accuracy of the RF classifier is consistently higher than that of SVM
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Figure 7. Histogram of RF, SVM, and ANN classifier accuracy over 100 trials (accuracy=1
corresponds to 100 percent of test samples being classified correctly).

and ANN. RF classification accuracies are skewed left and are more tightly clus-
tered around their mean of 98.9 percent. SVM classification accuracies are more
nearly Gaussian around 97.2 percent with a greater spread, while ANN accuracies
are skewed right but with a lower mean of 97.8 percent. We can infer that not
only does RF on average outperform SVM and ANN on our classification task,
but it also displays less variability and therefore greater reliability across many
iterations of classification.

Figure 8. Classifier performance as a function of training budget.

Figure 8 depicts the performance of the 3 classifiers as a function of the size of
the training set, represented as a fraction of the total number of data samples. It
is clear that when at least 20 percent of the data (399 time series) were used in
training, both ANN and RF consistently outperformed SVM, with the former two
being similar in performance. However, when less than 20 percent of the data was
used in the training set, ANN’s misclassification rate rose to nearly 15 percent.
ANN’s considerable drop in performance can be attributed to its complexity as
a model. ANN is able to learn arbitrarily complex decision boundaries, likely
causing it to overfit in the presence of sparse training data. SVM and RF are
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comparatively simpler models that appear more robust to overfitting on this data
set. The discrepancy among classifier performances on sparse training sets is
highly revealing. For the BPA dataset, both RF and ANN appear to be equally
viable candidates for classification, as there are no data limitations. However,
when considering the application of our early warning system to other electric
grids or domains, availability of training data may be an important consideration.
In sparse training scenarios, our results strongly suggest that RF is the premier
candidate for fault classification.

6.3.5. Preemptive classification. Classification results reported thus far have
been on complete time series containing 1802 time points, or approximately 60
seconds of data. Realistically, we aim to classify faults before they have run
their entire course. To this end, we couple the outlier detection method with
classification. Upon identification of 70 consecutive outliers, we aim to classify the
time series as quickly as possible to provide ample time for operators to intervene.
We trained the RF, SVM, and ANN classifiers on features derived from varying
numbers of time samples captured immediately after the occurrence of the first
outlier in the 70-outlier series. ACF was performed on the time series prior to
classification. Figure 9 plots classifier performance as a function of the number of
temporal samples used for feature definition.

Figure 9. Misclassification Rates of RF, SVM, and ANN as a function of number of temporal

samples used to define input features.

The results in Figure 9 bolster the superiority of RF over SVM and ANN in
timely classification of electric grid faults. Notably, RF required under 2 seconds
of additional data beyond the first outlier to identify the fault type of a time
series with maximum accuracy. This is a significant enabler for real-time fault
prediction.

6.4. Intra-class clustering

In this stage, we clustered the data within each fault class to uncover additional
structure and insight using DTW as the distance metric and PAM as the clustering
technique. We show results for the GMD 2 fault class. The inputs to the clustering



128 S. RAJA and E. FOKOUÉ

were min-max normalized time series. We computed the average intra-cluster
DTW distance for different numbers of clusters, plotted in Figure 10. We note
from this plot that intra-cluster distance initially drops as the number of clusters
increases, and then flattens beyond the case of 5 clusters. We thus determined
that the optimal number of clusters to capture structure in the data is 5. The
five clusters contained 28, 10, 17, 17, and 54 temporal waveforms, with respective
average intra-cluster DTW distances of 17.870670, 5.740929, 14.639842, 17.140088,
and 7.272719.

Figure 10. Average intra-cluster DTW distance (averaged across all clusters) as a function of
the number of clusters.

The five clusters contained 28, 10, 17, 17, and 54 time series, with an average
intra-cluster DTW distance of 17.870670, 5.740929, 14.639842, 17.140088, and
7.272719 respectively. Figure 11 shows the normalized time series in each cluster.

Figure 11. Clustering of GMD 2 fault time series (time series are min-max normalized).

The time series appear to be sufficiently different across clusters. Although
there is some intra-cluster varation, splitting the data into additional clusters may
cause overfitting.

Figure 12 plots the geographical coordinates of the GMD 2 faults, color-coded
by cluster membership. Interestingly, we note that the clusters appear to cor-
respond closely to the geographical distribution of the grid stations, suggesting
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Figure 12. Geographical representation of clustering of GMD 2 fault time series.

that location affects the response of a station to a fault. Further investigation is
required to uncover the deeper significance of these intra-class subgroups in effec-
tively responding to faults, as well as any potential connection to fault severity.

7. Conclusions and future work

An early warning system prototype to detect, classify, and diagnose BPA electric
grid faults was introduced. An efficient and effective anomaly detection method
using quartiles was employed to detect the presence of a fault. Following this, the
autocorrelation function was used to generate a compact, highly discriminative
feature representation of a time series. Comparing the support vector machine,
random forest, and artificial neural network classifier models, the random forest
classifier was observed to be the superior technique in terms of accuracy, consis-
tency, robustness to sparse training data, and excellent performance on incomplete
time series for preemptive fault classification. Finally, intra-class clustering was
conducted using partitioning around medoids with the distance metric defined by
dynamic time warping . This uncovered five clusters that correlated closely with
geographic location.

Future work will focus on gaining deeper understanding of the structure and
implications of intra-class subgroups, including the possibility of fault severity
estimation. Variables thus far unused, namely voltage and phase angle can be
used to provide additional information and granularity in the clustering process.
In addition, developing more effective spatiotemporal visualizations of time series
in the BPA grid is of crucial importance in enabling operators to assess and act
quickly in potentially disastrous situations. These may include real-time heat
maps of outlier frequency, rate of change, and other metrics. Additional data
such as weather related parameters (temperature, humidity, etc.) could also be
incorporated to aid the classification of faults with near-identical time series.
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