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ON A GLOBAL MEASURE OF NONLINEARITY

AND ITS APPLICATION IN PARAMETER ESTIMATION

IN NONLINEAR REGRESSION

LEONID KHINKIS

Abstract. The theoretical and computational challenges in least squares estimation

of parameters in nonlinear regression models are well documented in statistical
literature. The measures of nonlinearity are intended to quantify the degree of

nonlinearity and to explain the relationship between nonlinearity and statistical
properties of a model. A new measure of nonlinearity reflecting the model’s global

behavior is introduced and discussed in this paper. Two new criteria for global

minimum of the sum of squares in nonlinear regression incorporating this measure
are presented and illustrated on several published examples.

1. Introduction

It has been widely recognized that nonlinearity may adversely affect different as-
pects of statistical inference in nonlinear regression. Beale [1] and Bates and Watts
[2] were the first to apply some fundamental notions and powerful methods of dif-
ferential geometry to the study of nonlinear regression models. Specifically, Beale
applied the notion of curvature to improve approximate confidence regions while
Bates and Watts identified intrinsic and parametric curvatures and developed in-
ferential procedures based on these measures. This work was further advanced in
a number of publications including [6] and [7]. One needs to note that these curva-
ture measures are local since they are computed from the partial derivatives of the
model evaluated at a specified parameter vector. Thus, these measures reflect local
behavior of the model in a neighborhood of the specified parameter and may lack
an ability to capture the model’s global behavior. This motivates development of
methods based on techniques other than the Taylor’s expansion in a neighborhood
of the specified parameter. Construction of global criteria for minimization of the
residual sum of squares (SS) is an important problem in nonlinear least squares
estimation. Unlike in linear models, SS may possess multiple minima in nonlinear
regression models [4, 8], which raises a question whether the final iteration of any
SS minimization routine results in a true least-squares estimate. Chavent [3] and
Demidenko [4,5] obtained criteria (sufficient conditions) ensuring that a local min-
imizer of the residual sum of squares is also a global minimizer. In the absence of
a general global function minimization algorithm, sufficient conditions, like in the

MSC (2010): primary 62J02, 62K05, 62P10.
Keywords: nonlinear regression, global minimization, curvature, global measure of

nonlinearity.

101



102 L. KHINKIS

work cited above, may help to identify a true parameter estimate. Noteworthy,
it was shown in [5] that the level of the local unimodality of the sum of squares
used in Demidenko’s criterion equals to the minimum squared radius of the in-
trinsic curvature of the nonlinear regression model. Demidenko’s contributions
[4,5] illustrate the utility of the local curvature measures in development of global
methods. Pronzato and Pázman [14] introduced a global measure of nonlinearity
and called it an extended measure of intrinsic nonlinearity due to its relationship
to the intrinsic curvature of Bates and Watts [2]. This paper introduces a new,
geometrically appealing, measure of nonlinearity (MoN) and places it into the
context of the existing work. This measure advances methodology relying on the
notion of equidistant function originally introduced in [9] and further developed
in [10, 11]. The needed definitions and terminology are presented briefly in this
section. Two new global criteria for minimization of SS based on the mentioned
MoN are introduced in Section 2. These criteria are compared to the criteria
of Demidenko and Chavent using several examples from the published literature.
This is done in Section 3. It is argued in Section 4 that the new MoN is a natural
global extension of the intrinsic curvature of Bates and Watts and is also related
to the global MoN of Pronzato and Pázman.

Let us consider a nonlinear regression model given by

y = η(θ) + ε, θ ∈ Θ, IE(ε) = 0, var(ε) = σ2W,

where θ = (θ1, . . . , θm)t is a transposed column vector of unknown parameters.
Assume that θ ∈ Θ, and that the (known) parameter space Θ is a subset of
Rm. Furthermore, y ∈ RN is the vector of observed data, ε ∈ RN is the error
vector, σ is the parameter of the variance component which may, but needs not be
known, W is a known positive semi-definite matrix. The parameter σ equals to the
standard deviation of the error of an individual observation under the assumption
of a constant variance, in which case W = I, the identity matrix.

We assume that the errors are normally distributed. The mapping η : Θ→ RN
is a known, twice continuously differentiable mapping on int Θ.

The expectation surface is defined as Eη = {η(θ) : θ ∈ Θ}. The least squares
estimate (LSE) of θ is

θ̂ = θ̂(y) = arg min
θ∈Θ

S(θ), where S(θ) = ‖y − η(θ)‖2W ,

and the definition of the squared norm ‖a‖2W = atW−1a is used. This norm
corresponds to the inner product 〈a, b〉W = atW−1b. In what follows, ‖ · ‖ is
understood to be ‖ · ‖W=I .

Any LSE θ̂(y) ∈ int Θ satisfies the system of m normal equations (the stationary
conditions)

∂

∂θ
‖y − η(θ)‖2W = 0. (1.1)

The linear span of the vectors ∂η(θ)
∂θi

, (i = 1, . . . ,m), forms a plane, T (θ), known
as the tangent plane to the expectation surface Eη at θ ∈ Θ. Define the normal
plane NO(θ) as the hyperplane orthogonal to the expectation surface at the point
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η(θ),

NO(θ) :=

{
n ∈ RN :

〈
n,
∂η(θ)

∂θi

〉
W

= 0, (i = 1, . . . ,m)

}
.

Let P (θ) be an orthogonal projector onto the tangent plane T (θ). Then any vector
h ∈ RN can be represented as a sum of its mutually orthogonal components,

h = P (θ)h+ (I − P (θ))h,

so that P (θ)h ∈ T (θ) while (I − P (θ))h ∈ NO(θ). Let NO1(θ) be the set of all
unit vectors in NO(θ), NO1(θ) := {n ∈ NO(θ) : ‖n‖W = 1} and R+ be the set of
all positive real numbers.

A directional equidistant function, t(θ, θ1, n) was defined in [9, Eq. (3)] as

t(θ, θ1, n) =
‖η(θ1)− η(θ)‖2W

2〈n, η(θ1)− η(θ)〉W
.

Here θ ∈ int Θ, θ1 ∈ Θ and n ∈ NO1(θ). As pointed out in [9], y = η(θ) + tn
is equidistant from two different points, η(θ) and η(θ1) if and only if 〈n, η(θ1) −
η(θ)〉W > 0 and t = t(θ, θ1, n). Here t ∈ R+, θ ∈ intΘ, θ1 ∈ Θ and n ∈ NO1(θ).

The equidistance property refers to the equality

‖y − η(θ)‖W = ‖y − η(θ1)‖W .
This property will not hold for any y ∈ RN , θ ∈ intΘ, θ1 ∈ Θ, n ∈ NO1(θ) and
t ∈ R+ such that y = η(θ) + tn and 〈n, η(θ1) − η(θ)〉W ≤ 0. By Theorem 1 from
[9], for a fixed θ1 ∈ intΘ, t(θ, θ1, n) is the supremum of the values d ∈ R+ such

that y = η(θ) + dn results in the unique least square estimate θ̂(y) = θ. Let’s
define N1(θ, θ1) as

N1(θ, θ1) = {n ∈ NO1(θ) : 〈n, η(θ1)− η(θ)〉W > 0}.
The equidistant function t(θ, θ1) is defined in [11] as

t(θ, θ1) = inf
n∈N1(θ,θ1)

t(θ, θ1, n). (1.2)

By definition, t(θ, θ1) = +∞ if N1(θ, θ1) = ∅.
The Proposition 2.1 in [11] establishes that

t(θ, θ1) =
‖η(θ1)− η(θ)‖2W

2‖(I − P (θ))(η(θ1)− η(θ))‖W
, θ ∈ int Θ, θ1 ∈ Θ. (1.3)

Define

d(θ) = inf
θ1∈Θ

t(θ, θ1), θ ∈ int Θ. (1.4)

The intrinsic curvature of a nonlinear regression model is defined in [13] as

Cint(θ) = sup
v∈Rm\{0}

Cint(θ, v) (1.5)

where the directional curvature is

Cint(θ, v) =
‖(I − P (θ))vtH(θ)v‖

vtM(θ)v
, (1.6)

and

P (θ) = J(θ)M−1(θ)J t(θ)W−1
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is an orthogonal projector onto the tangent plane T (θ) introduced above, while
the expressions below represent the information matrix, Jacobian, and Hessian,
respectively:

M(θ) = J t(θ)W−1J(θ),

J(θ) =
∂η(θ)

∂θt
, H(θ) =

∂2η(θ)

∂θ∂θt
.

Geometrically, Cint(θ) represents the maximal curvature of the geodesic curves
on E passing through θ ∈ intΘ. The radius of intrinsic curvature,

Rint(θ) :=
1

Cint(θ)
,

represents the infimum of t(θ, θ1) when θ1 approaches θ along all possible direc-
tions.

2. Criteria for global minimum of the sum of squares

As mentioned in the Introduction, ‖y−η(θ)‖2W may have multiple local minimizers.
Since most algorithms for LS estimation only perform a local search, it is then
difficult to certify that the minimizer obtained is the global one. Two existing
criteria serving this purpose are presented below along with two new ones.

Criterion 1: The following is a reformulation of Theorem 7.3 from [3].
Assume that η(·) is twice differentiable in int Θ, where Θ is a compact subset

of Rm, and that the Jacobian J(θ) has full rank m for any θ ∈ int Θ. Define

αη =

(
min
θ∈Θ

λmin[M(θ)]

)1/2

,

βη = max
θ∈Θ

max
u∈Rm,‖u‖=1

(
N∑
i=1

[
ut
∂2η(xi, θ)

∂θ∂θt
u

]2
)1/2

,

and diam(Θ) = maxθ,θ′∈Θ ‖θ′ − θ‖. If

diam(Θ) < 2
√

2
αη
βη
,

then for any y such that the distance

d(y,Eη) = min
θ∈Θ
‖y − η(θ)‖ <

α2
η

βη
− βη

8
[diam(Θ)]2, (2.1)

the LS estimator has a unique global minimizer θ̂(y) depending continuously on
y, and there exists no other local minimizers.

Criterion 2: ([5, Thm. 2]) The global criterion is formulated in terms of the
level set defined as

L(S∗) = {θ ∈ Θ : S(θ) < S∗}.
The upper local unimodality level for the sum of squares of a nonlinear regres-

sion model is defined in [5] as S̄LU = minθ∈ΘR
2
int(θ). A local unimodality level,

SLU , is defined as any number less or equal to S̄LU . Demidenko’s Theorem 2 in
[5] states that there is at most one local minimum in each connected component
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of the level set L(S̄LU ). Moreover, if θ̂ is a local minimizer such that S(θ̂) < S̄LU
and the level set L(S̄LU ) is connected, then θ̂ is the global minimizer.

Criterion 3: Let θ∗ ∈ int Θ satisfies the stationary conditions (1.1) together

with
√
S(θ∗) < d(θ∗). Then θ∗ is a global minimizer.

Proof. Assume that θ∗ is not a global minimizer. Then there exists θ1 ∈ Θ such

that S(θ1) < S(θ∗). Let n =
y − η(θ∗)

‖y − η(θ∗)‖W
. The function

k(l) = ‖η(θ∗) + ln− η(θ1)‖W − l

is a continuous function of l on
[
0,
√
S(θ∗)

]
. Moreover, since k(0) = ‖η(θ∗) −

η(θ1)‖W > 0, and

k(
√
S(θ∗)) = ‖η(θ∗) +

√
S(θ∗) · n− η(θ1)‖W −

√
S(θ∗) =

√
S(θ1)−

√
S(θ∗) < 0,

there exists 0 < t <
√
S(θ∗) such that k(t) = 0. Then, z = η(θ∗) + tn is

equidistant from two distinct points, η(θ∗) and η(θ1) and, as explained in Section
1, n ∈ N1(θ∗, θ1) and t = t(θ∗, θ1, n). It follows from Eqs. (1.4) and (1.2) that

d(θ∗) ≤ t(θ∗, θ1) ≤ t(θ∗, θ1, n) <
√
S(θ∗).

This inequality contradicts the assumption that
√
S(θ∗) < d(θ∗). �

Criterion 4: Let θ∗ ∈ int Θ satisfies the stationary conditions (1.1) and√
S(θ∗) < d, where d = inf

θ∈int Θ
d(θ) = inf

θ∈int Θ,θ1∈Θ
t(θ, θ1).

Then θ∗ is a global minimizer.

Proof. This is a rather trivial corollary from Criterion 3 since, under assump-
tions of Criterion 4,

√
S(θ∗) < d ≤ d(θ∗). �

Clearly, Criterion 4 is weaker than Criterion 3. However, the upper bound on√
S(θ∗) being not dependent on θ∗, could be a desirable feature.

3. Comparison of different criteria

Pronzato and Pázman [15] offer two examples highlighting some issues concerning
practicality of both Criteria 1 and 2. Since, as shown in [5], Criterion 2 is an
improvement over Demidenko’s other criterion [4] and [15, Thm. 7.4], we refer to
Criterion 2 in our analysis.

For simplicity, in the following examples we use W = I, but the results apply
in general case.

Example 3.1. ([15, Exm. 7.5]) Consider the following one-parameter model:

η(x, θ) = θ{x}1 + θ2{x}2
with two observations at the design points x1 = (1, 0), x2 = (0, 1). Assume that
0 ∈ Θ ⊂ R. Thus, η(θ) = (θ, θ2)t. Direct calculations result in M(θ) = 1 + 4θ2,
αη = 1, βη = 2 and

Rint(θ) =
(1 + 4θ2)3/2

2
. (3.1)
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Clearly, R2
int(θ) reaches its minimum at 0, meaning that S̄LU defined in Criterion

2 is 1/4.
The expectation surface Eη = {(θ, θ2)t : θ ∈ R} is a parabola shown in Fig-

ure 1. The bound on d(y,Eη) given by (2.1) equals b(θ) = 1
2 −

(diam(Θ))2

4 , which
defines a tube around Eη (see the blue dashed-line curves in Figure 1 obtained for
diam(Θ) = 1).

Criterion 2 defines a tube around Eη with the boundary b = 1
2 (matching

diam(Θ) = 0 in Criterion 1) shown as red dotted-line curves in Figure 1, while
criterion 1 defines a smaller tube of a decreasing size as diam(Θ) increases.

We will now compute the equidistant function t(θ, θ1) given by Eq. (1.2) and
d(θ?) given by Eq. (1.4). The tangent vector t(θ) to the expectation surface Eη
is given by (1, 2θ); the unit normal vector n ∈ NO1(θ) is given by n = (−2θ,1)√

1+4θ2
.

Then

t(θ, θ1, n) =
‖η(θ1)− η(θ)‖2

2〈n, η(θ1)− η(θ)〉
=

((θ2
1 − θ2)2 + (θ1 − θ)2)

√
1 + 4θ2

2(−2θ(θ1 − θ) + θ2
1 − θ2)

=
(θ1 − θ)2((θ1 + θ)2 + 1)

√
1 + 4θ2

2(θ1 − θ)2
=

((θ1 + θ)2 + 1)
√

1 + 4θ2

2
.

Since NO1(θ) is one-dimensional, then

t(θ, θ1) = t(θ, θ1, n) =
((θ1 + θ)2 + 1)

√
1 + 4θ2

2
. (3.2)

Then d(θ) = infθ1∈Θ t(θ, θ1) = t(θ,−θ) =
√

1+4θ2

2 while d = infθ∈int Θ d(θ) =

d(0) = 1
2 .

The quantity d(θ) is the distance between a point A(θ, θ2) on the expectation
surface and the point M(0, θ2 + 1

2 ) where the normal line AM meets the vertical

axis y1 = 0. Criterion 3 specifies a region above parabola y = θ2

4 −
1
2 (given by the

green dash dot line-curve in Figure 1) which contains the tube bounded by the red
dotted line curves (Figure 1) specified by Criterion 2. This means that Criterion 3
is stronger than Criterion 2.

Criterion 4 uses the same quantity d =
√
S̄LU = 1

2 as Criterion 2. Yet it is
easier to implement since Criterion 2 additionally requires connectivity of the level
set L(S̄LU ) that needs to be verified.

Example 3.2. ([15, Exm. 7.6]) The previous example is modified by changing
η(x, θ) for negative θ,

η(x, θ) = (θ{x}1 + θ2{x}2)1IR+(θ) + (sin θ{x}1 + 2(1− cos θ){x}2)1IR−(θ)

with Θ = [γ, θmax] or Θ = [γ,+∞), γ > −2π. Since Criterion 1 requires compact-
ness of Θ, we will use Θ = [γ, θmax] when discussing this criterion.

The design points x1 = (1, 0) and x2 = (0, 1) remain as in the previous exam-
ple. One can verify that the vector function η(θ) presented in Figure 2 is twice
continuously differentiable in the interior of Θ.

Following [15], M(θ) = cos2 θ + 4 sin2 θ for θ ≤ 0; M(θ) = 1 + 4θ2 for θ > 0,
αη = 1, βη = 2 as in Example 3.1. Criterion 1 imposes a strict restriction on
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Figure 1. Regions in the sample space specified by different criteria in Example 3.1.

diam(Θ) due to inequality (2.1). In order for (2.1) be meaningful, its right-hand
side must be positive:

α2
η

βη
− βη

8
[diam(Θ)]2 > 0,

which, given the specified values of αη = 1 and βη = 2, leads to diam(Θ) <
√

2 or,

equivalently, θmax < γ+
√

2. Thus, Criterion 1 is not applicable if θmax ≥ γ+
√

2.
The values of Rint(θ) are computed as

Rint(θ) =
(4− 3 cos2 θ)3/2

2
when θ ≤ 0.

When θ > 0, Rint(θ) remains the same as in (3.1). So, minθ∈ΘRint(θ) = 1
2 , same

as in Example 3.1 resulting in S̄LU = 1
4 . As explained in [15, Exm. 7.6], although

the expectation surface Eη almost overlaps, performance of Criterion 2 is similar
to that exhibited in Example 3.1. The reader is referred to [15] for details.

Although the expectation surface Eη folds over itself, Criterion 2 is not respon-
sive to this behavior. Consequently, it leads to a false statement based on the
value of S̄LU alone. Connectedness of L(S̄LU ) needs to be verified which, in gen-
eral, makes Criterion 2 less practical. As pointed out in [15] and illustrated by
this example, “the information provided by the (local) curvature of the model is
clearly not enough to measure the difficulty of the estimation of its parameters
caused by an expectation surface that folds over itself”.
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Figure 2. Expectation surface in Example 3.2.

Assume θ ≥ 0 and θ1 > 0. Then, according to (3.2),

inf
θ1>0

t(θ, θ1) = t(θ, 0) =
(1 + θ2)

√
1 + 4θ2

2
.

When θ1 < 0, (1.2) results in

t(θ, θ1) = t(θ, θ1, n) =
‖η(θ1)− η(θ)‖2

2〈n, η(θ1)− η(θ)〉

=
((sin θ1 − θ)2 + (2(1− cos θ1)− θ2)2)

√
1 + 4θ2

2(θ2 − 2θ sin θ1 + 2− 2 cos θ1)
.

The graph of t(θ, θ1) is presented in Figure 3. The graph of t(θ, θ1), with θ = .75
selected for illustration purpose, is given in Figure 4. The graph has a discontinuity
at θ1 = 0, two local minima at θ1 = −3.989 and θ1 = −5.43, and the global
minimum of

d(0.75) = min
θ1∈(−2π,∞)

t(0.75, θ1) = t(0.75,−3.989) = 0.0002.

However, if Θ = [γ,∞) with γ > −3.989 then

d(0.75) = t(0.75, γ).

It is clear that d = minθ∈(−2π,∞) d(θ) = 0 meaning that Criterion 4 is not helpful
(as warranted by the example), yet Criterion 3 is applicable.
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Figure 3. The graph of t(θ, θ1).
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Figure 4. The graph of t(0.75, θ1).

Example 3.3. Models with a single linear parameter a.

Calculation of t when θ = (a, γ)t and η(a, γ) = aϕ(γ). In this case,

∂η

∂a
= ϕ(γ),

∂η

∂γ
= aϕ′(γ).

In this example, P (a, γ)k = P (1, γ)k for ∀ k ∈ Rn. In what follows, P (γ) :=
P (1, γ). Also, P (γ)ϕ(γ) = ϕ(γ) since ϕ(γ) ∈ T (θ). So,

t(a, γ, a1, γ1) =
a2

1‖ϕ(γ1)‖2 − 2a1 · a〈ϕ(γ1), ϕ(γ)〉+ a2‖ϕ(γ)‖2

2a1‖(I − P (γ))ϕ(γ1)‖
. (3.3)

Note that the derivative of a function given by f(x) = ex2+bx+c
dx is computed as

f ′(x) = ex2−c
dx2 , meaning that its critical numbers are x = ±

√
c
e . This translates
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into

a1 =

√
a2‖ϕ(γ)‖2
‖ϕ(γ1)‖2

= a
‖ϕ(γ)‖
‖ϕ(γ1)‖

(3.4)

being a critical number for t(a1) = t(a, γ, a1, γ1) as a function of a1, with fixed
(a, θ, θ1).

It then follows that mina1∈(0,l) t(a1) is achieved at a∗1 = a ‖ϕ(γ)‖
‖ϕ(γ1)‖ when l > a∗1

or at a∗1 = l when l ≤ a∗1.
Assume that l > a∗1; then, by substituting (3.4) into (3.3), one obtains

min
a1∈(0,l)

t(a1) = a · g(γ, γ1),

where

g(γ, γ1) =
‖ϕ(γ)‖ · ‖ϕ(γ1)‖ − 〈ϕ(γ1), ϕ(γ)〉

‖(I − P (γ))ϕ(γ1)‖
.

The Michaelis–Menten model given by

η(a, γ, x) =
a · x
γ + x

represents a specific example belonging to the class of models considered in Exam-
ple 3.3. The model could be used to describe a physiological response, η(a, γ, x), as
a function of a drug concentration, x, and contains two parameters, the maximum
response a and γ, the concentration resulting in 50% of the maximum response.

The model was originally developed by Michaelis and Menten [12] to describe
the metabolism of an agent by a reaction rate, in which case the response represents
the velocity of an enzyme-substrate reaction.

Here

ϕ(γ) =

[
xi

xi + γ

]t
, i = 1, . . . , n.

This model is discussed in the context of global curvature in [10].

Example 3.4. Consider

η(β, a, γ) = Xβ + aϕ(γ)

where X is a n×k matrix, β is a k×1 vector of linear parameters, γ is a l×1 vector,
a is a scalar, ϕ(γ) is a n× 1 vector, and k + l + 1 = m. Then θ = (β, a, γ)t ∈ Rm
is the vector of estimated parameters, and Eq. (1.3) becomes

t(θ, θ1) =
‖Xβ1 + a1ϕ(γ1)−Xβ − aϕ(γ)‖2

2‖(I − P (θ))(a1ϕ(γ1)− aϕ(γ))‖
. (3.5)

Since T (θ) is generated by {ϕ(γ), ∂γϕ(γ), uj} where uj is the j-th column of matrix
X, the following equalities hold:

P (θ)Xβ = Xβ, P (θ)ϕ(γ) = ϕ(γ), P (θ)Xβ1 = Xβ1.

Moreover, P (θ) = P (1, . . . , 1, γ) = P (γ). Thus, the right hand side of (3.5)
becomes

‖a1ϕ(γ1)−X(β − β1)− aϕ(γ)‖2

2|a1|‖(I − P (γ))ϕ(γ1)‖
. (3.6)
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Minimization of Eq. (3.6) over β and β1 is a linear regression problem, with the
minimum realized at

β − β1 = (XtX)−1Xt(a1ϕ(γ1)− aϕ(γ)),

meaning that

min
β,β1∈Rk

t(θ, θ1) =
‖a1(I −H)ϕ(γ1)− a(I −H)ϕ(γ)‖2

2|a1|‖(I − P (γ))ϕ(γ1)‖
. (3.7)

Here H = X(XtX)−1Xt, the well-known hat matrix.
Minimizing Eq. (3.7) over a1 is a problem solved in Example 3.3 leading to

min
β,β1∈Rk,a1∈(0,∞)

t(θ, θ1) = a · g1(γ, γ1),

where

g1(γ, γ1) =
‖a1(I −H)ϕ(γ1)‖‖(I −H)ϕ(γ)‖ − 〈(I −H)ϕ(γ1), (I −H)ϕ(γ)〉

‖(I − P (γ))ϕ(γ1)‖
.

The Log-Gompertz model, a popular model used in biology and medicine, par-
ticularly for modeling tumor growth, will be used as an illustration. The estimation
of the Gompertz model reduces to a nonlinear regression [5]:

yi = β + aeγxi + εi, i = 1, . . . , N

where yi is the logarithm of an observation, xi is the time point of observation.
Then X = (1, . . . , 1)t, XtX = n, H = 1

nXX
t = 1

nU , where U is the unit matrix.
We assume that both a and γ are negative, which is often the case in applications
and that xt = t. It follows that

min
a,a1∈(−∞,0)

t(θ, θ1) = −ag1(γ, γ1).

Let us consider the design points xi = 5, 10, 15, 20, 25, 30 used with parameter
values a = −5, γ = −0.1, β = 6. The values of g(γ1) = g1(−0.1, γ1) are presented
in Table 1.

Table 1. Log-Gompertz model.

γ1 -.01 -.02 -.05 -.1 -.2 -.3 -.5 -.8 -1 -1.2 -1.5
g(γ1) .13 .216 .32 .3 .18 .104 .038 .0084 .003 .001 .00025

4. An extended measure of intrinsic nonlinearity

As illustrated in Examples 3.1 and 3.2, intrinsic curvature given by Eq. (1.6) may
not be able to capture the global behavior of a nonlinear model. This necessitates
a concept of intrinsic curvature which does that. Pronzato and Pázman ([15],
p. 207) defined Kint,α(θ) = supθ1∈int(Θ)Kint(θ, θ1) as such measure, where

Kint,α(θ, θ1) = 2
‖(I − P (θ))(η(θ)− η(θ1))‖

‖η(θ)− η(θ1)‖2

(
(θ − θ1)tM(θ)(θ − θ1)

‖η(θ)− η(θ1)‖2

)α
.
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Clearly,

Kint,α(θ, θ1) =
1

t(θ, θ1)

(
(θ − θ1)tM(θ)(θ − θ1)

‖η(θ)− η(θ1)‖2

)α
,

where t(θ, θ1) is given by equation (1.3). It was shown in [15] that locally

Kint(θ, θ1) = Cint(θ, v) +O(‖θ − θ1‖),

where v = θ−θ1
‖θ−θ1‖ . This shows that for every unit vector v ∈ Rm,

lim
t→0

Kint,α(θ, θ + tv) = Cint(θ, v). (4.1)

Eq. (4.1) establishes a relationship between Kint,α(θ, θ1) and Cint(θ, v) when θ1

approaches θ along the direction of a unit vector v. Note that Kint,α(θ, θ1) requires
appropriate selection of α. While no general recommendation regarding selection
of α is provided in the literature, the choice of α = 1

2 is shown in [15] to be suitable
in Examples 3.1 and 3.2.

In our opinion,

sup
θ1∈Θ

Kint,0(θ, θ1) =
1

infθ1∈Θ t(θ, θ1)
=

1

d(θ)

is a natural, geometrically meaningful, extension of intrinsic curvature Cint(θ)
given in Eq.(1.5). Recall that the radius of intrinsic curvature, Rint(θ) = 1

Cint(θ)

is

sup{R : ‖y − η(θ)‖W ≤ ‖y − η(θ1)‖W }

if y satisfies

‖y − η(θ)‖W ≤ R and ‖θ − θ1‖ < δ, with some δ(y). (4.2)

Similarly, it follows from Theorem 1 in [9] that

d(θ) = sup{R : ‖y − η(θ)‖W ≤ ‖y − η(θ1)‖W }

if y satisfies (4.2) and ‖y − η(θ)‖W ≤ R.
Thus, d(θ) is a direct extension of Rint(θ) that removes the local condition,

‖θ − θ1‖ < δ, meaning that d(θ) ≤ Rint(θ) or, equivalently,

Kint(θ) ≥ Cint(θ).

Moreover, similarly to [15, p. 207],

lim
t→0

t(θ, θ + tv) =
1

Cint(θ, v)
,

and

inf
v

lim
t→0

t(θ, θ + tv) =
1

supv Cint(θ, v)
=

1

Cint(θ)
= Rint(θ).
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5. Discussion and conclusion

A new intrinsic MoN is proposed in this paper as a natural extension of Cint(θ). It
was shown that the radius of curvature, d(θ), together with associated quantities
t(θ, θ1) and d(θ) (Eqs. (1.3) and (1.4)), lead to new Criteria 3 and 4 for a global
minimizer of the SS. As illustrated in Examples 3.1–3.3, the new criteria work
when Criteria 1 and 2 don’t. Most importantly, Criteria 3 and 4 do not impose
any restrictions on the parameter space Θ (such as compactness in Criterion 1)
and require only optimization, but not other assumptions like connectedness of the
level set L(θ) in Demidenko’s Criterion 2, which could be difficult to verify. While
global minimization over multi-parameter space may present some challenges, it
is simplified in the presence of linear parameters, as illustrated in Examples 3.3
and 3.4. As follows from our previous work [9, 11], Criteria 3 and 4 offer sharp
boundaries in the class of criteria that majorise S(θ) using either a function of θ
or a constant, and do not impose any additional requirements. Moreover, as illus-
trated in Example 3.3, a hybrid of Criteria 3 and 4 is possible, where minimization
of the function estimating S(θ) occurs over some subset of the parameter space
rather than over the entire parameter space. This is typically the case when the
model contains both linear an nonlinear parameters, like in Examples 3.3 and 3.4.
In this case neither Criterion 4 nor Criterion 2 work since both d and S̄LU are 0
when the model’s linear parameter varies over (0,∞) or any other set for which
0 is an accumulation point. In this case either Criterion 3 or a hybrid criterion
based on Criterion 3 could be applied.

An important practical problem to quantify the variance of the model’s errors
ensuring that the parameter estimation criterion readily identifies the global min-
imizer is beyond the scope of this paper. The solution to the problem presented
in ([10]) in the case of normally distributed errors is based on the notions of the
equidistant function t(θ, θ1) (Eq. (1.3)) and the radius of curvature d(θ) (Eq.
(1.4)) discussed in this paper.

The new measure of nonlinearity introduced in this paper merits further ex-
ploration due to its geometric appeal coupled with its applicability to different
aspects of nonlinear parameter estimation and inference.
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