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Abstract. The object of this study was the recognition of Regions Of Interest(ROIs)
in a time series of digital images of two specific laboratory experiments. It concerns
the identification of objects in a tissue surface by high-resolution and high-speed
ad-hoc systems for morphological dynamic image analysis. The protocols and the
algorithms implemented are developed to retrieve biomechanical properties of two
different in vitro systems; the solid filament X-MET (eX-vivo Muscle Engineered
Tissue) to measure its reaction to a different frequency stimulation, and a planar
system of co-culture of skeletal and cardiac muscle cells, where myotubes and car-
diomyocytes coexist, to discriminate the interaction between different cell’s type,
of its spontaneous pulse. The results of the stimulated X-MET from solid culture
system are frequency dependent points of the macroscopic muscular strength and
its contractile response. The results for the co-culture planar board measure the
correlation of the pulsed movements of the different parts of the tissue.

1. INTRODUCTION

At the IITQCLNS Biomechanics Laboratory of Rome the researchers have tested
a system based on Digital Image Correlation (DIC) [11] for the measurement
of small high dynamic biological muscle specimens’ contractile properties, that in
some cases fails, especially on X-MET muscle tissues movements. Our goal, in this
field of investigation, is to build ad-hoc reliable methods to track objects during
their movements. We focus on two different in vitro systems of muscle cells analy-
sis: one is filament of muscle fiber and the other is planar culture, both processing
algorithms implemented by Mumford Shah energy functional minimization [1] in 2
and 3 dimension. The X-MET muscle filament, is electrically stimulated, and we
need to retrieve its strength reaction measure. The planar in vitro co-culture sys-
tem presents myotubes and cardiomyocytes in spontaneous contraction. Once the
skeletal muscle cells have formed multinucleated myotubes (5 days after plating),
myotubes show spontaneous contractile activity without any stimulation, while,
the day after isolation, cardyomyocites shows spontaneous contraction [5,9].

To monitor the contraction and the possible electrical coupling of skeletal and
cardiac cells, an experimental system is in course of development. We perform an
analysis of pair of selected ROIs, to establish the interaction and correlation of
these contractile movements.

MSC (2010): primary 49-04, 68U10; secondary 65K15.
Keywords: variational methods, muscle engineered tissue, image and movie processing.

59



60 M. PEDONE, S. CAROSIO, G. RUOCCO aAND Z. DEL PRETE

1.1. The X-MET system

The analysis of the X-MET contraction is based on a high resolution microscope
joint with a high efficiency camera [11], able to record up to 400 frame per second
of 1020x 300 pixels gray scale images Fig. 1. The post-processing analysis consists
of two phases. We have to filter the single frame to enhance the edge of cell and
obtain a regularized object.

Different kind of pre-processing techniques can be adopted and lots of regu-
larization techniques can be tried, the previous study on the echocardiographic
movies [8], suggests an approach based on the energy functional minimization;
because it preserves the edge of the little areas, as the cells on the muscle surface,
better than the smoothing-based methods. The objects visible in the tissue are
difficult to track; sometimes the jerking movement is greater than the cell dimen-
sions, faster than the frame-rate and vibration, on the vertical axis, cause focal
distortions of microscope lens and the software DIC for tracking rigid causes errors
and disconnects its follower algorithm.

We choose the dynamic regularization technique of Mumford-Shah in order to
establish the parameter values A and « for functional minimization. The goal
is to select an object on the muscle surface; enough smooth and with an alpha-
proportional length of the perimeter. This approach limits the tracking error or
recovers it in a few steps, as we explain in the next section. The selected ROIs are
mapped in a record structure containing its dimension, border, centroid relative
and absolute position, label, and area.

To study the X-MET behavior, the synchronized measurement of strain and
force makes it possible to obtain a comprehensive tool for tissue’s monitoring. In
the muscle filament system, one end of the X-MET is anchored while the other
end is fixed to a micro force transducer, so we can retrieve an isometric measure
of the strength during stimulation, see [10].

When electrically stimulated by means of two platinum electrodes, X-MET
shows a contractile response that is consistent with that of adult skeletal mus-
cles: single pulses evoke twitch contraction, while trains of pulses elicit tetanic
contractions which produce forces that increase when the frequency increases [4].
We retrieve the results for different stimulation frequency and on every selected
ROI. Thus we now present a numerical frame pre-processing technique based on
a variational model that consists of functional minimization with a Mumford-Shah
(M-S) time-dependent energy term, which is suitable to enhance ROI’s edge and
regularize initial data for the “follower” algorithm. Our goal is to regularize the
frame to enhance, select, and follow the ROI’s centroid, (see Fig. 2) frame by
frame. The contribution is to build a protocol of elaboration that performs the
recognition of the ROIs to evaluate the local strength of the muscle fiber against
the force transducer global measurements. So we need to perform a great deal
of manually driven adjustment of the parameter involved in the functional min-
imization. From a 3D point of view, the “follower” is developed to perform the
continuous segmentation of the region, “like a hole in cheese”, and evaluate at
every step the region properties.
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é — High frequency camera

Micro force
transducer

Figure 1. The X-MET system, the microscope (stereomicroscope NIKON SMZ 800 for tissue

magnification up to 6.3X) over the sample plate with high frame rate camera (Vendor Basler

Model acA2040-180km, Type of data presented Selected samples, Sensor type CMOS, Sensor

diagonal Diagonal 15 mm, Resolution 2048x2048 pixel, Pixel width 5.50 um, Pixel height 5.50

pm), the muscle filament are in the middle of two platinum electrodes that provide the electrical

stimulus by a electrostimulator. One end of the muscle is anchored to a piezoelectric micro force
transducer to measure the strength [11].

Figure 2. Selected ROI 01 (green contour and + the centroid position) over the real frame
(1005x 140pixel) in hot color map, for a better identification of the different zone where the
muscle strength can be measured.

1.2. The co-culture system

The planar cell co-cultures were obtained seeding skeletal muscle cells onto 15-
and-half-day old embryonic cardiomyocytes. To enhance cardiomyocyte survival
and the correct adhesion to the culture dish, it was necessary to leave the cells
in their specific culture medium for 48 hours. After this period, skeletal muscle
cells, obtained from a primary culture, were seeded on cardiac cells and cultured
in skeletal muscle growth medium [4]. The planar in-vitro co-culture model ex-
hibits cell spontaneous activity: the contraction of differentiated myotubes and
the beating of cardiomyocytes. To evaluate the possible electrical coupling of
skeletal and cardiac muscle cells, we have to build an ad-hoc method of anal-
ysis. The previous applications by Mumford Shah, on echographics images [8]
and the tests with the planar model don’t give enough edge continuity over the
frames. The low frame rate causes a gear deal of edge presence in every frame not
enough continuous. So the idea was to see the time dimension as the third dimen-
sion of the domain set in functional minimization. Let €2 the image domain and
g,u,S€QCR?x0,...,T] — R. In Fig. 3 we distinguish the circular cardiomy-
ocytes and skeletal muscle myotubes of long profile. The low frame rate, about
15 fps, cannot give a real continuous edge detection in 2D and the follower cannot
recognize the motion of a single ROI. By a 3D pre-processing technique, we ob-
tain regularized areas, over the frames, representing different ROIs. Thus, we can
adopt the frame to frame edge selection on regularized image by a manual driven
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Figure 3. Co-culture system, circlular cells identify cardiomyocytes and long aggregates was
myotubes. Their rhythmical pulse seems to be uncoupled but correlated.

threshold filtering. The modified M-S for a 3D domain, by a fine screw-driver
adjustment of the parameter; A\, a, give us good results and the pre-processed 3D
array can be passed to the Matlab' “follower” algorithm described in the next
part.

2. MODEL PROBLEM

We search for constituent parts of an image. Our aim is to enhance the edges of
the various cells captured in the frames by the acquisition system. We enhance
and detect the objects visible on the muscle fiber by functional minimization.
We assume these objects to be Regions of Interest and follow their rhythmical
movements. We use the Mumford-Shah (M-S) functional [7] in its approximated
form proposed by Ambrosio Tortorelli [1] to segment the cell borders. An accurate
choice of the parameter A\, € RT that perform the best recognition of the ROIs
is needed for each particular movie. In the following section, we briefly recall the
essential formulation of the model problem used to regularize and enhance images.
For a complete review, see the book by Morel and Solimini [6].

The variational model introduced by Mumford and Shah in 1985, consists of an
energy-based method to minimize over the pair u and ¥ the functional

/ (u—g)? + )\/ IVuPde  +aHN(D),
Q ax

in the domain Q C R%. The function g : Q — [0, 1] represents a gray-scale image
encoding, at each point of the bounded open subset Q C R? domain , our image in
the explained application for d = 2, 3 (planar or solid approach). For a given image
g € L>=(Q) we search for a function u: @ € R? — R and X is a finite Hausdorff
(d-1)-dimensional measure H?~1(2) closed set and represents the set where the u
can be discontinuous. The set % consists of the edges of the segmented objects
contained in the given image g. ¥ C Q (the discontinuity set) Mumford and
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Shah conjectured that the functional admits a minimizer satisfying (C1) and (C2)
regularity hypotheses [7].
(C1) X consists of a finite number of C11-curves, meeting 92 and meeting each
other only at the endpoints.
(C2) wis C' on each connected component of Q — 3.

The minimization is a hard task mainly due to the term depending on the measure
of the surface H4~1(S,). Several different approaches have been proposed in the
last decade, we use the most popular one proposed by Ambrosio and Tortorelli [1].

2.1. Ambrosio—Tortorelli approximation of the M-S Functional

The bidimensional approximation of the M-S functional to search for a minimum
by Euler equation has been presented so far. The numerical solution of the equa-
tion is just a guarantee for local minima, while I'-convergence assures for the
functional the existence of global minima under the regularity hypotheses, as we
explain in the next section. We now consider the weak version of the functional;
where u is in the space SBV of the special function of bounded variation (having
distributional gradient without Cantor part), let the functional:

FMS(u):/(u—g)de—&—)\/ | Vu |? dz + aH*(Su),
Q Q

where the minimization is made only over the function u and the role of K is
assumed by the Swu representing the unknown set of discontinuity point, from
minimization theorem 3.1 Proposition 2.1 in [3], it respectively follows that:

S, 15 a piecewise C? submanifold of R?. Non-convexity of the functional is
given by its geometric part. Nevertheless, parameters generate different weights
for individual addenda; their role, for limit values, determine how much cost the
jumps of the geometric part of the weak form. Let A = 1, we consider the role of
the parameter « in the weak form of the functional:

FMS(u):/Q(u—g)2dx+/Q\Vu 2 dz 4+ oM (Su).

When a — +00, the term aH!(Su) vanishes over the jump set. Consequently, the
functional gets convex

Puts (0o = [ 0=+ [ V0P do.

By a continuation method, if oy = 10° is taken, we obtain a convex functional
again.
For the geometric part, very large parameters a and S = 1 are typically used

a/ (e | VS |2 —|—l(1 - S)Q) dx.
Q 4e

The procedure consists of solving an Euler equation system for the a-values which
are progressively reduced, for example aj, = agc® with 0 < ¢ < 1. Thus, heuris-
tically, one goes down along the functional gradient until the global minimum is
reached, with a functional slightly deconvexed.

For different A > 0 and « > 0, the three addenda can be explained as follows:
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I) L2-distance of u from the given g, which evaluates how much our image solu-
tion is “near” to the given image.

IT) To make small areas, delimited by small contours, not distinguishable, our u
must be C! in large subsets. The presence of the A-parameter allows us to
smooth the function u as much as we like. Following the optical flow model
(see page 184 [2]), we introduce the time dependence in the gradient term
(|Vul?) explained in the numerical section. The gradient of u for the exam-
ined frame is calculated with its neighborhoods. We formulate the gradient
calculus in the next part to explain the time dependence of its values for
a three consecutive frames. So we increase the presence of the edges with
a “continuous motion”.

III) In this addendum we add a measure of segmentation spread by considering
the length of curves. When the value of the parameter « is very small, small
contours are privileged, while larger values privilege large subsets. Thus, the
values of a-parameters are usually chosen to allow for a correct recognition of
forms according to the expectations and type of image. Many different choices
of a-parameter values have been made in our application for the recognition
of the interested area.

We use the standard methods of Ambrosio-Tortorelli sequence of approximated
functionals [12] to calculate the relative Euler equations. By the Birindelli, Finzi
Vita [3] technique, we can divide the problem into the sequences of uncoupled
elliptic system of equations [8].

2.2. Sketch of I'-convergence for the M-S functional

We recall the main property of the I'-convergence of Functionals by the mean-
ing convergence of minimizers up to a subsequence like the Ambrosio Tortorelli
form of the M-S Functional for its equi-coercive property. The weak form F'(u) of
the M-S Functional take its argument u on the Special Bounded Variation space
(SBV) for function without Cantor part in its distributional gradients [1,12]. The
I'-convergence for the weak form of the functional is obtained up to a subsequence
of minimizers where the equi-coercivity is assured for the tubular neighborhood
construction. Briefly, in Ambrosio Tortorelli’s theorem the functional F' is approx-
imated by a sequence of elliptic functionals. Let the pair (u,Y) the minimizers of
the Functional F'(u) then the functional is defined by

= [ F(u) ifueSBV(Q),S=1,
F(u,8) = { 400 otherwise.

Where the set ¥ is replaced by an auxiliary variable S' (a function) which approx-
imates the characteristic function (1 — Xy).
Let {K.} be a sequence of positive numbers converging to zero such that

The approximating functional

Fws) - [

(u—g)2dx+)\/(SQ+Ke)|Vu | da+
Q Q
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1
+ a/ (e | VS |2 +—(1 - S)2> dz.
o) 4e

Where the above term (S? + K,) realizes, when ¢ — 0%, the shrinking tubular
neighborhood. The approximation of the sequence of functional in M-S theory
in the discontinuity set [1,12] by the A-T subsequence. For the equi-coecivity
property of the approximating functional, there exists a convergent subsequence
of minimizers [12] to the M-S solution.

2.3. Ambrosio-Tortorelli approximation of the M-S functional

We refer to algorithm for the approximation of F'(u,X) with a sequence F, of
regular functionals defined on a Sobolev space. In image analysis the most used is
the Ambrosio-Tortorelli approximation [2]. Let the parameter « = 1 and A = 1,
we can write:

Fure (u,S) = /

(u—g)zdx—l—/Sz\Vu |? dac—i—/ <6|VS|2 —|—1(1—S)2> dx.
Q Q Q 4e

If (ue, S¢) minimizes the functional Fi, then the following result holds, see [1]:

2
u€£—>u ed S, — 1 — Xy, pere — 0T,

The family Far. approximates the Mumford-Shah functional in the sense of I'-
convergence as you can see in [1,7], since the equicoercivity properties are verified,
up to subsequences, the u, of any global minimizer (u.,ve) of the Far. converges
to a global minimizer u of M-S.

The function S, is a sequence of edge variables that provides the approximation
of S, while e — 0F.

3. DISCRETIZATION AND NUMERICAL APPROXIMATIONS

In many applications of image processing, it is usual to manage the image domain
with its pixel definition. We consider ) as an open and limited subset of R?
(rectangular images). We define the image as the brightness-intensity function
g : @ — R (scaled between 0,...,2° — 1, for s gray-tones) considered in gray
scale. We adopt the elliptic systems of equations as a support theory and the
mesh grid equal to the points density domain. For the X-MET 2D model the
lattice is reduced, due to the cropping step at [1005x140] points for every 680
frame. The co-culture system is treated as a 3D data of [240x320x458] points.
We use a numerical scheme based on explicit finite differences, over the rectangle
Q with step h; this way we obtain (z,y) = (ih,jh) for 0 < i,j < N. Reducing
Q to a square of side 1 and taking h = %, discrete coordinates will become:
u(zh,]h) = Uq,j and S(Zh,]h) = Si7j.

3.1. Euler equations

The numerical scheme is composed of two coupled parts. We begin by putting
up = g and Sp = 1. and at every step we calculate u; for Sy = 1 solving a linear
elliptic equation and find S; from the second equation; this process is repeated for
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a fixed number of iterations. Some scheme for the Ambrosio-Tortorelli segmenta-
tion problem can be found on Spitaleri et al. article [12].

In order to determine the minimum of the functional we adopt the continuous
theory given in Birindelli and Finzi Vita [3] adapted to a finite difference mesh-grid
through the following iterative scheme by giving a maximum number of iteration
Nit and a tolerance €, and then constructing:

So=Lu =g
n=1,2 ..., Nit find u,, by solving:
div((S2_; + Ko)Vuy,) = p(u, —g) inQ
Gun — in 00
n
and S, by solving:
@eAS, =S, | Vu, 2 —=2(1-5,) inQ
95 = in 00
stop for n = Nit.
For any n > 1 there exists u, an S, solution of the respective system which
satisfies the bounds:
[tn oo < [lgllzoe-
The above statements are the supporting theory for the continuous model and
allow for the discretization even if the data is unbounded. However, in our case
the given data was limited in its intensity profile.

3.2. The discrete divergence

In a numerical scheme a function v € R? can be approximated by finite difference,
its first order variation on the x and for y direction is:
Ox h T Oy h '
The divergence of the vector valued function Z(z,y)Vu(z,y) by second order of
centered difference is given by
div(Z(z, y)Vu(z,y)) = Zi+%7j(ui+l7j — Uij) — ZF%J(UW‘ — ui-1,5)+

T2 g1 (Wigr = ig) = 2 jya(uij—1 — i)

where
1 1
Zivy ;=5 G+ Zig) 5 Ziy ;= 5(Zig + Zi—ag),
1 1
Zijes = 5Zign+ Zig) 5 Zijoy = 5(Zig + Zija).

The n** approximated item of the sequence of the Ambrosio-Tortorelli func-
tional, by fixing every direction of the space, the term Z(x,y) = (S%(z,y) + K.)
becomes for the = variable:

0 9 ouy
. ((S + K.) ax) =~
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1
Y [(S7i1, 4+ S2) (igry — wig) + (S7; 4+ 871 ;) (wimrj — uig)]

for the y variable:

0 9 ou\
B ((S + K.) (’)y) =~

1 2 2 2 2
Y] [(S7 41 + 57 ) (i —wig) + (S7; + S75-1) (wij—1 — wig)] -
In Image Processing the lattice has a spatial density which is equivalent to image
resolution, so we use here finite differences with node resolution equal to the spatial

grid-step, then the discretized equation will look as follows
(8315 +S25) (i1, —wig) + (875 + 87y ;) (wim1,j — ui)+
+ (871 + S ) (Wi —wig) + (S75 4575 1) (wi i1 —uij) =
= ph*(uij — gij)-
The discrete Laplacian for a function u is:

Au(z,y) 7= Une + Uyy = 55 [wiprj + i1y — 45+ wijpn + i)

1
72l
Within €2, the second equation, using a five-point stencil, will be

o
ae (Siy1,;+ Sic1j + Sije1 + Sijo1 —48:;) = h2S; ;| Vul? ; — h2i(1 = Sij)-

The problem being elliptic, we use a discretization such that we get centered finite

differences; therefore for 2 points stencil: let [Vul7 ; := |§u|22]
~ 1
\Vul?; = e (i1, — wiz15) + (i1 — tij—1)?)

for nodes inside (2. ~
Or by other formulation by 3 points stencil: let [Vul?; := [Vul

|§u|m— o (Wit1 — wij)® + (uij —uio1;)? . (wi 1 — i) + (uij — ui,j,l)Q.

8h? 8h?

Then
~ B2
ae S;j +ay;

 dae+ h2|Vul? ; + aﬁ—:'

Si

where Si,j =9Si+1,5 + Sifl,j + Si)j+1 + Si,jfl-
The discretized u becomes:
2
(S5 ) (Wigr,j + wim1j + Ui jg1 +uij—1)

Us 5 = +
Y (uh? A4S+ 8P+ SE L+ S+ SE )

N (S7r1,) (i1 )+ (571 ;) (wi1,5) + (S7 1) (i) +(SF 1) (wi j—1) +ph?g; 5
(uh? + 482, + 83+ 8P+ 57,0+ 57,20)
We extend the equations for the case of three dimensional data, such as the co-

culture system. We calculate the coeflicients of the final formulation of the algo-
rithm.
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3.2.1. System of equations and boundary condition. Neumann boundary
condition can be introduced by dummy nodes on the image perimeter, so we obtain
the null derivatives at the border; for j = 0 and ¢ = 1,..., N with j = —1 and
y = —h the system:

U0 — Uj,—1 =0

Sio—Si,-1 =0

and so on for the remaining sides, see [8]. The symmetrical terms disappear
by rewriting equation on the border, then we obtain the algebraic system with
2(N + 1)? unknown variables:

BS =e¢

It can be solved by fixing S first and then U to get the following system: the recur-
rent two-step algorithm, uncouples the system at every iterative step, calculates
the first equation, replaces it in the second one and then replaces the result back
into the first equation.

{AU:b

3.2.2. Matrix row sorting. For the equations pair an algorithm is used, which

enables a transformation of the associated matrix into a vector by performing
2

a row sorting for U € RWHD™ Aligning rows back to back, an array:

Ae M((N+1)2,(N+1)%R),

with PENTA-DIAGONAL structure, is obtained. A five-point cross scheme ap-
pears in respect to the variable u; ;. The system can be solved by an iterative
relaxation method such as Jacobi, with parallelized cycle, or Gauss—Seidel, both
by Array Diagonal Dominance rule to assures the convergence [8].

3.2.3. Time dependence in V for X-MET. The Gradient calculus on a Lat-
tice of h spacing is implemented by following the optical flow model (see [2, p. 184]),
we introduce the time dependence in the gradient term (|Vu|(f))? respectively for
two or three points stencil
1 1 1
(Vuli)) =190l + g (@ —ulf7).,

,] ]

(f=1) ()y2 H (f+1)\2
(F2 2 Uy =)™ + (g — )
(|Vu|i,j ) =Vuli; + e < 5 .

It represents a new formulation of the model with a dynamic mean between frames.
The square gradient is point by point calculated over function u as the difference
in brightness intensity between the preceding and the following frame. Globally,
the variability of this term is mostly due to the strength of ROIs walls. In the
presence of a continuous movement we are in a condition to assume regularity for
function gy over time. Only a conjecture on continuous model to support the time
dependence in gradient calculus was possible due to the difficulty to extend the
M-S theory [8], in our case only the test on the images produces some interesting
enhance results for future developments. A refined theory for a new functional
formulation with time dependence in edge selection is worked on.
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3.3. 3d extension

To achieve optimal recognition of the cells and to recognize their rhythmical pulse
we regard it as solid material by imagining every frame as the slide of a 3-d array.
The theory supports n-dimensional results and formulation, so if we use the indices
i, 7,1 as the three dimensions, we have the formulation

~ B2
ae S; 41+ ays

5.
6ae + h2|Vu, ;1|2 + a’Z—E

Sig1 =

where Si,j,l = Si+1,j,l + 51;1,]‘,1 + Si,j+1,l + Si,jfl,l + Sz‘,j,l+1 + Si,j,lfb

2
(S5 5.0 (Wit 15,0 + Uim1, 50+ Wi 1,0 + Ui -1 + Ui g i1 + Wi gi—1)
Wi g1 = 2 2 2 2 2 2 2 2
(Wh? + 657+ Sy 5+ 571+ 5 501+ 50 + 57501

_|_

(S241 50 (i) + (S72 50 (i) + (57000 (W) + (87520 ) (i j-1,0)
(uh? + 657;2,j,l + Si2+1,j,l + Sizfl,j,l + Si2,j+1,l + Szz,jfl,l + Siz,j,lJrl + S?,j,lq)

(Siz,j,l+1)(ui,j,l+1) + (Siz,j,l—l)(uid,l—l) + thgi,jJ
(uh? + 657, + 52y 50+ S0+ S8+ 5%+ 58 +52)

+

4. APPLICATIONS AND RESULTS

We show a formulation of the standard model problem for image segmentation by
taking a new approach to pre-treated movies data in both systems. The regular-

Figure 4. X-MET real Image frame.

Figure 5. S: Grad time processed frame Set of edges.

ization and edge enhance obtained by pre-process methods produce homogeneous
areas such as a “cartoon” image. In particular the pixels closest to the edge are
emphasized over others. Then we can compute the ROIs area over the frames.
The original frame of X-MET Fig. 4 as input data to the grad-time M-S produce
the Fig. 5 the edge set representing the perimeter of the areas. The regularized
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Figure 6. U: Grad time processed frame used for ROIs selection filter by MSS 2D regularization:
A =5.0,a = 0.0002.

Image now presents better defined regions of iso-level intensity see Fig. 6. The fol-
lower algorithm consists of an appropriate region cropping containing the selected
ROI and its possible variability. A threshold filter with lower and higher value of
gray cut is used to transform images-frame in duo-tone; black and white (BW) see
Fig. 7. The explained procedure was iterated for all frames. So we can map the
interesting ROIs, and compute the properties such as Centroid, Areas, and so on
to build the structure, see Fig. 8. So we can record the structure of properties all
over the frames. Different data sets for different stimulation experiments produce
a table of strength reaction useful to measure the bio-mechanical properties, which
was validated by the Microforce transducer data Fig. 13.

4.1. Protocol and results for X-MET movie processing

The schema of the elaboration is resumed in the step necessary to evaluate the
position of every ROIs. Once the first frame is used the follower algorithm builds
the sequence of the structure with the measured values on all frames. See Fig. 7.

Original Image frame M-S grad time R —— Jump SET
pre-processing P —— ]

| ‘ Regularized U

l ROls selection

Rils Area.cropped Centroid first Frame 80Kz Stimuaton

Original lnages frame/ / Whmford-Sah (M-5) Jumg) Set Feqularized frame (M5} for Rois folowes aigoritm

ROI 1 cropped bw

Figure 7. X-MET elaboration protocol, the multiple image represents a frame sequence in the

preprocessing routine that gives back an enhanced regularized U and the relative S of jump set

(the edges of recognized areas), at bottom the areas representing interesting ROIs (green color
and + the centroid) the transformed ROI 1 in BW color is the final result.
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4.1.1. ROI structure parameters. Every ROI selected is mapped with the
structure by the follower algorithm. So we can identify the measured values with
a recorded array. The data type is generally double and the various fields that
represent dynamic values present an array dimension due to the frame number
of the movie as in Fig. 8. The centroid of the tracked area looks like Fig. 9.

B D |
Eile  Edit Wiew Graphics Depug Decktop  lindow  Help A%
Blsmm|o| - |4 |95 BEma e
Rois(1,1) <1x1 structs
Field ¢ ‘Value Min ‘Max |

H rect [278,81,46,34] 34 273

EEArea <6801 doublaes 232 319

HH Centroid <BB0x2 doubles 16,2603 34,1060

EE Distance <6801 doublex 309.4401 326,3444 |

0] Edgye < Ix6B0 cell> |

HH UoutCropped BW <35x4 =680 doublax <Too many .. <Too many el

H CropThreshold 0.1597 0.1597 0,1597

Rois ><|Rms(1,1) ><|

Figure 8. ROI structure of measured parameter, struct with: The rectangle of ROI movements,

Array of ROI’s area pixel Number x frame Number, Centroid X,Y x Frame Number, Edge Map of

ROI x,y points x Frame Number, Cropped Image Black and White x Frame Number, Threshold
value filter.

The X-MET setup is configured to measure at different frequency stimulation the

Centroid Roi 03 Sef Contraction K-MET

* Centraid

 Centroid

Frame 1:999

Figure 9. Centroid position over the frames of the ROI 01 cropped area in recognized movements
limits, (46x34 pixel 680 frames).

strength between the fixed point and the micro force transducer. The movements,
of the selected ROIs, over the = axis present the typical characteristics of the
muscle contraction [4]. Here we present the evaluation axis, in pixel units, of the
component X of the Centroid for every frequency stimulation of the ROI 1 Fig. 10
and all ROIs at single frequency Fig. 12. Every stimulation frequency presents
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Figure 10. X-MET ROI 1 at frequency stimulation 10, 20, 30, 40, 60, 70, 80 [Hz], in y axis the

longitudinal value of measured movement of centroid in x axis the frames number.
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Figure 11. ROI 1 Amplitude spectrum frequency at stimulation 10, 20, 30, 40, 60, 70, 80 Hz,
by an FFT, the interpretation are in course of developments.

a different trend. For the X-MET the tetanic force increased with increasing fre-
quency up to 70-80Hz but, on average, the asymptotic value is already achieved at
60Hz. The errors in the follower algorithm in the Fig. 12, due to an unrecognized
ROIs area, are recovered at next frame. This suggests a better performance than
the previously used software for fracture recognition. Indeed X-MET’s strain field
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Figure 12. X-MET, ROIs Centroid X Component at 80 Hz stimulation in y axis the longitudinal

value of measured movement of centroid in x axis the frames number. The errors refer to an
unrecognized ROI at specified frame number.
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Figure 13. Example of force response obtained stimulating an X-MET by an electrical
stimulation of 80 Hz.

during electrical stimulations was previously measured through the use of a tech-
nique based on Digital Image Correlation (DIC) [10]. The correlation algorithm
divides the first image into a fixed and regular grid of square elements. A similar
operation is then performed on all the subsequent deformed images, arranging the
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nodes of the deformed grid. In this way, the sub-images, from the re-sampling
operation, look as close as possible to the corresponding sub-images of the image
used as reference. An evaluation of the standard deviation (SD) obtained when
computing these average values, is a further marker of the tissues homogeneity.
Muscle jerk or quick jumps cause to the follower to lost the ROI but the DIC
cannot recover this error, than we have a better performance and higher definition
by our methods.

4.2. Analysis of coupled cells movements in a co-culture system.

Fills Labelied on board
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+ dato2
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+ catad
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Tt
Region Mark ROl 77

Fegion Mark RO 151
t e
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T date20
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4 dato2e

Figure 14. Interesting ROIs on co-culture board, after the pre-processing elaboration by the
3D algorithm, the long cell selected represents the myotubes cell’s type and the circular one the
cardiomyocytes. By M-S 3D (A = 0.02,« = 0.0001).

We are not interested in retrieving the temporal integration but the right def-
inition of the selected cell’s type over the time. So the choice of space and time
scale was set equal to the pixel and frame definition. Electrical coupling of skele-
tal and cardiac cells is a research field of movies analysis, and just a sketch is
presented. Due to a low resolution and few frame rate movies, the protocol is
only the first test to measure the correlation between the selected ROIs. In a fu-
ture release of the two stages software, we hope to improve the myotubes and
cardiomyocytes detection. The M-S algorithm for 3D segmentation of solid ob-
jects can be used in quality control of industrial production and other research
fields. The automatic ROIs selection over the 3D data, gives us numerous differ-
ent objects. The technique of 3D neighborhood (bwlabeln() function in Matlab®,
reduces the amount of possible objects (from 16642 to 1498 and 11 when we set
6, 18, 26 connected-neighborhood 3D connectives after the threshold bw filtering)
the best responsive values were obtained with 18 connected-neighborhood. Then
we can select the ROIs representing both cell types. On these ROIs we measure
the cross-correlation of their contractile response, see Fig. 14. In particular some
ROIs were selected to understand the correlation between their movements the
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Figure 15. Cross-correlation of the same cell, the symmetric profile of the auto-correlation
proves the related movements of equal cell’s type.
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Figure 16. Similar cell’s type correlation, same cell types in different location present quasi-
synchronized pulse.

values of interest are between cardiomyocyte (circular cell) and myotubes (long
profiles cell) or between the same types in different positions. Different choices are
possible to evaluate cross-correlation between significant ROIs, here we view an
auto-correlation to understand and validate the results. We transform the centroid
Cartesian coordinates in Polar and plot the module p. Fig. 15 and in the left bot-
tom axis of the figures the y axis represents the normalized p of polar coordinates
of centroid’s ROIs. As known by literature cardiomyocytes exhibit a synchronous
beating, and so by selecting ROIs containing distant cardiomyocytes we can evalu-
ate the real correlation. As expected the selection of two different cardyomyocites
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Figure 17. Different cell’s type correlation, no further related pulse recognized.

show a good correlation Fig. 16. On the other hand, different cellular types Fig.
17 (myotubes in yellow and cardiomyocyte in cyan) show less correlation.

5. CONCLUSION AND DEVELOPMENT

Many trial tests are necessary to establish a better parameter choice in the func-
tional minimization. We observe a little flash in the movies due to the digital
Camera setup. Laboratory systems of illumination utilizing fluorescent lamps, hid
lamps or neon tubing can be recognized by a fast-Fourier analysis of the frames
background. Then a new measurement system can be implemented to reduce ex-
ternal light sources. The diode lamps for this kind of image acquisition has a better
performance and avoid flickering at high frame rate recording. This choice should
give more stability to the ROIs edge over the frame and avoid error of the follower
algorithm. X-MET Possible technical refinement in analysing ROIs detection.

Apply new functional formulation to enhancing ROIs by time gradient all over
the movies; test other ROIs follower and recognition focused on a little object;
evaluate the strength between different ROIs; led based illumination at the Micro-
scope sample basement; refine the protocol to retrieve 3D measure from Confocal
System (the microscope lens settings to inspect the internal structure of muscle
filaments) and understand amplitude of frequency spectrum analysis to evaluate
stimulation and properties.

For the co-culture in-vitro systems we suggest to improve the Digital Image
system to a better CCD resolution; by a higher frame rate Camera acquisition and
a better recognition of cardiomyocytes and myotubes with an accurate parameter
choice in two separate steps of the enhancer and follower algorithms.
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