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THE QUASITOPOS OF B-UNIFORM FILTER SPACES

DIETER LESEBERG and ZOHREH VAZIRY

Abstract. In this paper a systematic study begins of the category b-UFIL of b-
uniform filter spaces and b-uniformly continuous mappings. We will show that

this construct forms a quasitopos in which quotients are stable under products.

Consequently, it is extremely useful for further studies in the realm of Bounded
topology.

1. Introduction

This paper continues our treatise on “Categories of several convergences”. The
present terminology is essentially the one used in the above mentioned paper [10].
Our focus is the consideration of so-called b-uniform filter spaces, which repre-
sent a natural generalization of several classical convergences such as uniform
convergences, point-convergences, filtermerotopies and Cauchy spaces or suited
set-convergences as well, see [1, 2, 4–6, 11, 13]. Moreover, following the idea of es-
tablishing a more convenient category with well-behaved properties such as being
a quasitopos in the sense of Penon or Preuß [11], respectively, we will show that
the category b-UFIL of b-uniform filter spaces possesses such desirable features.
In addition, we can state that even quotient maps in b-UFIL are closed under
formation of arbitrary products. Thus, this new established concept makes it eas-
ier for topologists to solve their problems since strong topological universes are
extremely useful [11].

On the other hand, b-UFIL can be nicely embedded into the fundamental
construct b-CONV of b-convergence spaces and corresponding maps [7–9], which
additionally contains all set-convergences and STOP, the category of supertopo-
logical spaces and continuous maps in the sense of Doitchinov [3]. Hence, b-UFIL
represents a bridge between all classical convergences and the broader concept of
b-convergence in the setting of the fundamental concept called Bounded topology,
in which structures on bounded sets or bornologies are defined. Here we should
note that classical concepts are essentially working on the power set of a given set
X.
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2. The construct b-UFIL

Definition 2.1. For a set X a pair (BX , µ) consisting of a non-empty subset
BX ⊂ PX and a non-empty set µ ⊂ FIL(X × X) of uniform filters is called a
b-uniform filter structure on X, and the triple (X,BX , µ) a b-uniform filter space
provided that the following axioms are satisfied:

(buf1) B1 ⊂ B ∈ BX imply B1 ∈ BX ;
(buf2) x ∈ X implies {x} ∈ BX ;

(buf3) B ∈ BX\{∅} implies
•
B ×

•
B∈ µ;

(buf4) U ∈ µ and U ⊂ U1 ∈ FIL(X ×X) imply U1 ∈ µ.

Here, PX denotes the power set of X, FIL(X×X) is the set of all filters on X×X
and its elements are called uniform filters (on X) and for B ∈ BX\{∅},

•
B:= {A ⊂

X : A ⊃ B}.
Given a pair of b-uniform filter spaces (X,BX , µX), (Y,BY , µY ), a map f :

X −→ Y is called b-uniformly continuous, in short buc, if f satisfies the following
conditions:

(buc1) B ∈ BX implies f [B] ∈ BY ;
(buc2) U ∈ µ implies (f × f)(U) ∈ µY , where (f × f)(U) := {V ⊂ Y × Y :

∃ U ∈ U such that (f × f)[U ] ⊂ V } with (f × f)[U ] := {(f × f)(x1, x2) :
(x1, x2) ∈ U} = {(f(x1), f(x2)) : (x1, x2) ∈ U}.

By b-UFIL we will denote the category of b-uniform filter spaces and b-uniformly
continuous maps.

Proposition 2.2. b-UFIL is a topological construct in the sense of [11].

Proof. For a set X, let I be a class, (Xi, µi)i∈I a family of b–uniform filter
spaces and (fi : X −→ Xi)i∈I a family of maps. Then, (BXI , µIX) is the initial
b-UFIL structure on X, where BXI := {B ⊂ X : ∀ i ∈ I, fi[B] ∈ BXi} and
µIX := {U ∈ FIL(X ×X) : ∀i ∈ I, (fi × fi)(U) ∈ µi}.

Evidently, (BXI , µIX) satisfies the axioms (buf1), (buf2), and (buf4), respectively.

To (buf3): For B ∈ BX\{∅} we are getting (fi × fi)(
•
B ×

•
B) = fi(

•
B) × fi(

•
B)

= f [
•
B]× fi[

•
B] ∈ µi for each i ∈ I, hence,

•
B ×

•
B∈ µIX follows.

Here, in general, for U1,U2 ∈ FIL(X × X), their cross-product is defined by
setting:

U1 × U2 := {R ⊂ X ×X : ∃U1 ∈ U1,∃U2 ∈ U2 such that R ⊃ U1 × U2}.

By definition of (BXI , µIX), each fi is b-uniformly continuous. Now let

(Y,BY , µY )

be a b-uniform filter space and g : Y −→ X be a mapping such that, for each
i ∈ I, fi ◦ g : (Y,BY , µY ) −→ (Xi,BXi , µi) is b-uniformly continuous. We have to
show that g : (Y,BY , µY ) −→ (X,BXI , µIX) is b-uniformly continuous.

To (buc1): B ∈ BY implies (fi ◦ g)[B] = fi[g[B]] ∈ BXi for each i ∈ I by the
assumption. Hence, g[B] ∈ BXI follows.

To (buc2): U ∈ µY implies (fi × fi)((g × g)(U)) = ((fi ◦ g)× (fi ◦ g))(U) ∈ µi
for each i ∈ I by the hypothesis. Consequently, (g × g)(U) ∈ µIX results, showing
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that g : (Y,BY , µY ) −→ (X,BXI , µIX) is b-uniformly continuous. Since (BX , µ) ∈
P (PX) × P (FIL(X ×X)) is valid, the class of all b-uniform filter structures on
X is a set.

Finally, the only b-uniform filter structure on a set X with card X = 1 is the

pair ({∅, {x}}, {•x × •x, P ({x} × {x})}), where x denotes the element of X. If X is
empty, then ({∅}, {{∅}}) represents the only b-uniform filter structure on X. �

Remark 2.3. As already observed in our former paper [10], preuniform conver-
gence spaces and b-uniform filter spaces essentially coincide if and only if the as-
sumed boundedness BX is discrete, meaning that BX = {∅}∪{{x} : x ∈ X} := DX
(compare with Definition 2.12). Further, we repeat that the corresponding named
category DISb-UFIL is bicoreflective in b-UFIL and itself forms a strong topo-
logical universe, see [11]. On the other hand, some important set-convergences are
in a one to one correspondence to b-uniform filter spaces and, finally, generalized
filter merotopies introduced as b-filter spaces can also be nicely embedded into
b-UFIL.

Thus, our introduced concept can be regarded as a suitable tool for studying all
the mentioned constructs in common. Moreover, in this context let us still mention
the fact that basic properties of spaces such as compactness, precompactness and
completeness can be newly defined in b-UFIL, and fundamental theorems, as for
example that of Tychonoff, find corresponding expressions [10].

Remark 2.4. Since b-UFIL is a topological construct, the set of all b-uniform
filter structures on X forms a complete lattice. So the following definition makes
sense.

Definition 2.5. Let X be a set and let (BX1 , µ1), (BX2 , µ2) be b-uniform filter
structures on X. Then we are setting:

(BX1 , µ1) ≤ (BX2 , µ2) if and only if BX1 ⊂ BX2 and µ1 ⊂ µ2.

(BX1 , µ1) is said to be finer than (BX2 , µ2) and (BX2 , µ2) is said to be coarser than
(BX1 , µ1).

Remark 2.6. The initial b-uniform filter structure on a set X with respect to
(X, fi, (Xi,BXi , µi), I) is the coarsest b-uniform filter structure on X such that fi
is b-uniformly continuous for each i ∈ I.

In the event of I being the empty class, (BXI , µIX) = (PX,FIL(X ×X)), and
it is called an indiscrete b-uniform filter structure on X.

Proposition 2.7. Let (X,BX , µ) be a b-uniform filter space and A ⊂ X.
Then, (BA, µA) is a b-uniform filter structure on A, where BA := {B ∩ A :
B ∈ BX} and µA := {UA : U ∈ µ} with UA := {U ∩ A × A : U ∈ U}, such
that (A,BA, µA) represents the b-uniform filter subspace of (X,BX , µ) in b-UFIL,
meaning that (BA, µA) is the initial b-uniform filter structure on A with respect to
(X, i, (X,BX , µ)), where i : A −→ X denotes the inclusion map.

Proof. First let us denote by i : A −→ X the corresponding inclusion map.
Evidently, BA is not empty.

To (buf1): Let B1 ⊂ B∩A for some B ∈ BX . Then, B1 ∈ BX with B1 = B1∩A,
and B1 ∈ BA follows.
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To (buf2): x ∈ A implies {x} ∈ BX with {x} = {x} ∩A, and {x} ∈ BA results.
µA is not empty, since µ 6= ∅.

First, we show UA ∈ FIL(A × A). UA 6= ∅, since U 6= ∅. Now let U1 ∩ A × A
for some U1 ∈ U and U2 ∩A×A for some U2 ∈ U be given. Then, (U1 ∩A×A)∩
(U2 ∩A×A) = (U1 ∩ U2) ∩ (A×A) with U1 ∩ U2 ∈ U , so that the intersection of
the given elements of UA belongs to UA.

Finally, let (U1 ∩A×A) ∩ (U2 ∩A×A) be an element of UA with U1, U2 ∈ U .
We have to show that U1 ∩ A × A as well as U2 ∩ A × A belongs to UA. By the
hypothesis, we are getting (U1∩A×A)∩(U2∩A×A) = U ∩A×A for some U ∈ U ,
hence, U ∪U1 ∈ U and U ∪U2 ∈ U follows. But then, U1∩A×A = (U ∪U1)∩A×A
and U2 ∩A×A = (U ∪ U2) ∩A×A can be easily deduced showing the claim.

To (buf3): For D ∈ BA\{∅}, we have to verify that
•
D ×

•
D∈ µA holds. By the

definition of BA, we are getting D = B ∩ A for some B ∈ BX , hence,
•
B ×

•
B∈ µ

follows, and
•
D ×

•
D= {U ∩A×A : U ∈

•
B ×

•
B} = (

•
B ×

•
B)A ∈ µA results.

To “ ≤ ”: R ∈
•
D ×

•
D implies R ⊃ D × D, hence, R ⊃ (B ∩ A) × (B ∩ A) =

(B×B)∩(A×A) =: R1. Consequently, R1 ∈ (
•
B ×

•
B)A is true, and R ∈ (

•
B ×

•
B)A

follows.

To “ ≥ ”: Conversely, let R ∈ (
•
B ×

•
B)A. Then R = U ∩ A × A for some

U ∈
•
B ×

•
B, hence, R ⊃ (B × B) ∩ (A × A) = (B ∩ A) × (B ∩ A) = D ×D, and

R ∈
•
D ×

•
D is valid.

To (buf4): Now V ∈ FIL(A × A) with V ⊃ UA for some U ∈ µ are implying
(i× i)(V) ⊃ U since R ∈ U implies R∩A×A ∈ UA, hence, R∩A×A ∈ V follows
by the hypothesis, and R ∈ (i× i)(V) results. Consequently, (i× i)(V) ∈ µ follows.
But V = ((i × i)(V))A because R ∈ V implies R = A × A ∩ (i × i)[R], hence,
R ∈ ((i× i)(V))A is true.

Conversely, R ∈ ((i× i)(V))A implies R = S ∩ A× A for some S ∈ ((i× i)(V).
Consequently, we can find V ∈ V such that S ⊃ (i × i)[V ] = V holds. But then,
S ∩ A × A ⊃ V , and R ∈ V follows. Evidently, {i[D] : D ∈ BA} =: iBA ⊂ BX
holds, so that i : (A,BA, µA) −→ (X,BX , µ) satisfies (buc1).

To (buc2): Now let UA ∈ µA for some U ∈ µ. We will show that U ⊂ (i× i)(UA)
can be deduced. U ∈ U implies U ∩ A× A ∈ UA, hence, U ∩ A× A = (i× i)[U ∩
A × A] ∈ (i × i)(UA) is valid, and U ∈ (i × i)(UA) results. Finally, let (EA, η)
be b-uniform filter structure on A with i : (A, EA, η) −→ (X,BX , µ) is buc. Our
goal is to verify (EA, η) ≤ (BA, µA). First, let D ∈ EA. Then, by the hypothesis,
i[D] ∈ BX is true. But D = i[D] = D ∩A, and D ∈ BA results.

Next, let V ∈ η, we will show that V = UA for some U ∈ µ. By the assumption,
we know that (i × i)(V) ∈ µ is true, which means that, by the former proof,
V = ((i× i)(V))A results. This statement concludes the proof. �

Remark 2.8. Since b-UFIL forms a topological construct, there exist arbi-
trary final structures. The final b-uniform filter structures on a set X with respect
to ((Xi,BXi , µi), fi, X, I), where fi : Xi −→ X are mappings for each i ∈ I,
denoted by (BIX , µXI ) is the finest b-uniform filter structure on X such that fi
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is b-uniformly continuous for each i ∈ I, (compare with Definition 2.5 and Re-
mark 2.6, respectively). If I is the empty class, then (BIX , µXI ) = (DX , {V ∈
FIL(X ×X) : ∃x ∈ X such that

•
x × •x⊂ V} ∪ {P (X ×X)}).

Remark 2.9. In general, let C be a category. Then a family (fi : Xi −→ X)i∈I
of C-morphisms indexed by some class I, in short a sink in C, is called an epi-sink

in C provided that, for any pair X
α→ Y and X

β→ Y of C-morphisms such that
α ◦ fi = β ◦ fi for each i ∈ I, it follows that α = β.

If C is a topological construct with structured sets (X,µ) as objects, then
fi : (Xi, µi) −→ (X,µ) is called final provided that µ is the final C-structure on
X with respect to the given data.

Motivation 2.10. In a topological construct C, final epi-sinks play an impor-
tant role. So it is possible to describe the extensionality of C ( meaning that each
C-object has a one-point extension in C) by the fact that in C final epi-sinks are
hereditary. Moreover, a construct is Cartesian closed, meaning that in C natural
function space structures are available, if and only if for each C-object Y and for
any final epi-sink (fi : Xi −→ X)i∈I in C (1Y × fi : Y × Xi −→ Y × X)i∈I is
a final epi-sink, i.e., the functor “Y ×−” preserves final epi-sinks, see [11].

Proposition 2.11. Let X be a set, (X,BXi , µi)i∈I a family of b-uniform filter
spaces and (fi : Xi −→ X)i∈I a family of maps. If (fi : Xi −→ X)i∈I is an epi-sink
in b-UFIL, then (BIX , µXI ) is the final b-uniform filter structure on X with respect
to the given data, where BIX := {B ⊂ X : ∃ i ∈ I ∃Bi ∈ BXi such that B ⊂ fi[Bi]}
and µXI := {U ∈ FIL(X ×X) : ∃ i ∈ I ∃ Ui ∈ µi such that (fi × fi)(Ui) ⊂ U}.

Proof. It suffices to show that the equation X =
⋃
i∈I fi[Xi] holds, then the

remainder is clear. If card X < 2, then the assertion is trivial. Let card X ≥ 2. If
X 6=

⋃
i∈I fi[Xi], then there would be x0 ∈

⋃
i∈I fi[Xi] and x1 ∈ X\

⋃
i∈I fi[Xi]. If

{x0, x1} is endowed with the indiscrete b-uniform filter structure, see Remark 2.6,
then one obtains an object in b-UFIL. Hence, α : X −→ Z defined by α(x) := x0
for each x ∈ X and β : X −→ Z defined by

β(x) :=

{
x0 for x ∈ ∪i∈Ifi[Xi];
x1 otherwise

are b-uniformly continuous maps such that α◦fi = β◦fi for each i ∈ I. Obviously,
α 6= β in contradiction to the fact that (fi)i∈I is an epi-sink. Consequently,
X =

⋃
i∈I fi[Xi] follows.

Next, we will demonstrate how b-UFIL can be nicely embedded into b-CONV,
the topological construct of b-convergence spaces and b-continuous maps, see [7]
and the following definition. This superconstruct contains not only the neighbor-
hood spaces of Tozzi and Wyler [12] or the supertopological spaces in the sense
of Doitchinov [3] but also the set-convergences as defined by Wyler [13]. Hence,
convergences in all their facets are now being involved and can be examined for
their prevailing aspects. �

Definition 2.12. A triple (X,BX , τ) consisting of a set X, a boundedness BX
and a convergence function τ : BX −→ P (FIL(X × X)) is called b-convergence
space provided that τ satisfies the below conditions:



160 D. LESEBERG and Z. VAZIRY

(bc1) B ∈ BX , U ∈ τ(B) and U ⊂ V ∈ FIL(X ×X) imply V ∈ τ(B);
(bc2) τ(∅) = {P (X ×X)};
(bc3) x ∈ X implies

•
x × •x∈ τ({x}).

Here, a boundedness BX is a non-empty subset of PX that satisfies the following
conditions:

(b1) B1 ⊂ B ∈ BX implies B1 ∈ BX ;
(b2) x ∈ X implies {x} ∈ BX .

Given two b-convergence spaces (X,BX , τX), (Y,BY , τY ) a function f : X −→ Y
is called b-continuous if it is bounded, which means {f [B] : B ∈ BX} ⊂ BY and,
in addition, we have that f preserves uniform filters in the sense that B ∈ BX and
U ∈ τX(B) imply (f × f)(U) ∈ τY (f [B]).

Moreover, by b-CONV we will denote the corresponding category.

Remark 2.13. There exist some interesting subcategories of b-CONV that
can be described as follows. Let us call a b-convergence space (X,BX , τ)

(i) equiform if τ satisfies the condition
(e) B1, B2 ∈ BX\{∅} imply τ(B1) = τ(B2);

(ii) set-pointed if τ satisfies the condition

(sp) B ∈ BX implies
•
B ×

•
B∈ τ(B).

For both definitions, there exist special fundamental convergences independent of
each other as presented in [10]. Now, let us call a b-convergence space (X,BX , τ)
set-pointed equiform provided τ satisfies both the above conditions. By SETeb-
CONV we will denote the full subcategory of b-CONV whose objects are the
set-pointed equiform b-convergence spaces.

Theorem 2.14. The categories b-UFIL and SETeb-CONV are isomorphic.

Proof. Let (X,BX , µ) be a b-uniform filter space. Then define a convergence
function τµ by setting:

τµ(∅) := {P (X ×X)} and
τµ(B) := µ for each B ∈ BX\{∅}.

Evidently, τµ satisfies all axioms (bc1) To (bc3), (sp) and (e), respectively. Con-
versely, if assuming a set-pointed equiform b-convergence space (Y,BY , t), we put:

ηt := {U ∈ FIL(Y × Y ) : ∃ B ∈ BY such that U ∈ t(B)}.

Hence, (Y,BY , ηt) defines a b-uniform filter space so that the following equations
hold:

(i) ητµ = µ;
(ii) τηt = t.

To (i) “ ≥ ”: Let X = ∅ and U ∈ µ, hence, U = P (X ×X) = {∅}, according to
Proposition 2.2 consequently, U ∈ τ(∅) follows, and U ∈ ητµ results.

“ ≤ ” Conversely, U ∈ ητµ implies U ∈ τµ(B) for some B ∈ BX . Since by the

hypothesis X = ∅, BX = {∅} follows, and U = P (X ×X) by the definition of τµ.
But µ 6= ∅, and therefore U ⊃ V for some V ∈ µ, showing that U ∈ µ is true. Now
let X 6= ∅.
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To (i) “ ≥ ”: Let U ∈ µ, hence, we can find x ∈ X, and {x} ∈ BX\{∅} follows.
Thus by definition U ∈ τµ({x}) is valid, and U ∈ ητµ results.

“ ≤ ”: Conversely, U ∈ ητµ implies U ∈ τµ(B) for some B ∈ BX . If B 6= ∅, then
U ∈ µ follows. If B = ∅, U = P (X ×X) is valid, and U ∈ µ results because µ 6= ∅.

To (ii) ≥: Without restriction let B ∈ BX\{∅}. U ∈ t(B) implies U ∈ ηt, hence,
U ∈ τηt(B) follows.

“ ≤ ”: U ∈ τηt(B) implies U ∈ ηt. Then, there exists D ∈ BX such that
U ∈ t(D). If D 6= ∅, U ∈ t(B) follows. If D = ∅, U = P (X × X) holds and
•
B ×

•
B∈ t(B), this implies U ∈ t(B) according To (bc1). Evidently, the former

established correspondence is functorial, meaning that for set-pointed equiform
b-convergence spaces (X,BX , τX), (Y,BY , τY ) and every map f : X −→ Y the
following statements are equivalent:

(i) f : (X,BX , τX) −→ (Y,BY , τY ) is b-continuous;
(ii) f : (X,BX , ητX ) −→ (Y,BY , ητY ) is b-uniformly continuous.

�

Remark 2.15. Now, we pointed out that SETeb-CONV can be even regarded
as a bireflective subcategory of b-CONV.

Proof. For a b-convergence space (X,BX , τ), let us consider the b-convergence

space (X,BX ,
•

((τa)e)), where τa, τe are defined as in [7] and in general
•
τ (∅) := {P (X ×X)} and
•
τ (B) := τ(B)∪{U ∈ FIL(X×X) : ∃D ∈ BX\{∅} such that

•
D ×

•
D⊂ U}

for each B ∈ BX\{∅} and some b-convergence operator τ .

It is easy to verify that (X,BX ,
•

((τa)e)) defines a set-pointed equiform b-conver-
gence space such that

1X : (X,BX , τ) −→ (X,BX ,
•

((τa)e))

is b-continuous. Now, let (Y,BY , τY ) be a set-pointed equiform b-convergence
space and f : (X,BX , τ) −→ (Y,BY , τY ) be b-continuous map. We have to verify

that f : (X,BX ,
•

((τa)e)) −→ (Y,BY , τY ) is b-continuous, too. For B ∈ BX\{∅}

let U ∈
•

((τa)e) (B). In case of U ∈
•

((τa)e) (B), we can find x ∈ X such that
U ∈ τa({x}). Hence, by definition U ∈ τ(D) for some D ∈ BX\{∅} with x ∈ D.
By the hypothesis we are getting (f×f)(U) ∈ τY (f [D]) = τY (f [B]). Note also that

{f [B] : B ∈ BX} ⊂ BY holds. If
•
D ×

•
D⊂ U for some D ∈ BX\{∅}, we are getting

(f×f)(
•
D ×

•
D) = f [

•
D]×f [

•
D] ∈ τY (f [D]) = τY (f [B]), and (f×f)(U) ∈ τY (f [B])

results, concluding the proof. �

3. On the Cartesian closedness

Cartesian closedness, i.e., the existence of natural function spaces is useful, e.g.
in homotopy theory (fundamental groups) or for the constructing of completions
[11]. In particular, it plays an important role in topological constructs. Moreover
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it should be noted that this property may be defined by means of a pair of ad-
joint functors (F1,F2), where neither F1 nor F2 is an inclusion functor as in the
preceding section dealing with reflections and coreflections.

Definition 3.1. A category C is called Cartesian closed provided that the
following conditions are satisfied [11].

(1) For each pair (X,Y ) of C-objects there exists a product X × Y in C;
(2) For each C-objects X, the following holds: for each C-object Y there

exists some C-object Y X (called power object) and some C morphism
eX,Y : X × Y X −→ Y (called evaluation morphism) such that, for each
C-object Z and each C-morphism f : X × Z −→ Y , there exists a unique

C-morphism f̂ : Z −→ Y X such that the following diagram commutes.

eX,Y
Y

1X × f̂

X × Y X

X × Z

f

Remark 3.2. In topological constructs, the condition (1) is automatically ful-
filled. Now it will be useful that in a topological construct C the property of being
Cartesian closed is equivalent to the following statement: for each C-object Y and
for any final epi-sink (fi : Xi −→ X)i∈I in C, (1Y × fi : Y ×Xi −→ Y ×X)i∈I is
a final epi-sink, i.e., “Y ×−” preserves final epi-sinks.

Theorem 3.3. Let (fi : (Xi,BXi , µi) −→ (X,BX , µ))i∈I be an epi-sink in b-
UFIL. Then, for any b-uniform filter space (Y,BY , µY ), (1Y × fi : (Y ×Xi,BY ×
BXi , µY × µi) −→ (Y ×X,BY ×BIX , µY × µXI ))i∈I is a final epi-sink in b-UFIL,
see Proposition 2.2, Remark 2.9 and Proposition 2.11, respectively.

Proof. First let us consider the following diagram:

fi
X

pXi

Xi

pX

Y ×X
1Y × fi

Y ×Xi

piY

Y

pY

Y
1Y

We will denote by (BY ×BXi , µY ×µi) and by (BY ×BIX , µY ×µXI ) the prevailing
b-uniform filter product structures on its corresponding sets:
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Now we will show that (1Y ×fi : (Y ×Xi,BY ×BXi , µY ×µi) −→ (Y ×X,BY ×
BIX , µY × µXI ))i∈I is an epi-sink in b-UFIL.

If α, β : (Y ×X,BY ×BIX , µY ×µXI ) −→ (Z,BZ , µZ) are b-uniformly continuous
maps such that α ◦ (1Y × fi) = β ◦ (1Y × fi) for each i ∈ I and if (y, x) ∈ Y ×X
then since X =

⋃
i∈I fi[Xi] (see Proposition 2.11), there is some i ∈ I and some

xi ∈ Xi with fi(xi) = x. Hence, α((y, x)) = α((y, fi(xi))) = α((1Y × fi)(y, xi)) =
β((1Y × fi)((y, xi))) = β((y, fi(xi)) = β((y, x)) and, consequently, α = β results.

Next, we will show that, for each i ∈ I, 1Y ×fi : (Y ×Xi,BY ×BXi , µY ×µi) −→
(Y ×X,BY ×BIX , µY × µXI ) satisfies (buc1). So let for i ∈ I, B∗i ∈ BY ×BXi . We
have to verify that (1Y ×fi)[B∗i ] ∈ BY ×BIX holds, which means pY [(1Y ×fi)[B∗i ]] ∈
BY and pX [(1Y × fi)[B∗i ]] ∈ BIX . By the hypothesis, we get piY [B∗i ] ∈ BY and
pXi [B

∗
i ] ∈ BXi . But pY [(1Y ×fi)[B∗i ]] ⊂ piY [B∗i ] and pX [(1Y ×fi)[B∗i ] ⊂ fi[pXi [B∗i ]]

hold since both parts of the diagram are commutative. Now the claim follows.
Next, the inclusion BY × BIX ⊂ BIY×X is valid. B∗ ∈ BY × BIX implies

pY [B∗] ∈ BY and pX [B∗] ∈ BIX . Hence, there exists i ∈ I and Bi ∈ BXi such that

pX [B∗] ⊂ fi[Bi]. We set B∗i := P iY
−1

[pY [B∗]] ∩ p−1Xi [Bi]. Then, B∗i ∈ BY × BXi ,
since piY [B∗i ] = piY [piY

−1
[pY [B∗] ∩ p−1Xi [Bi]] ⊂ piY [piY

−1
[pY [B∗]] = pY [B∗] ∈ BY .

pXi [B
∗
i ] = pXi [pY [B∗] ∩ p−1Xi [Bi]] ⊂ pXi [p

−1
Xi

[Bi]] = Bi ∈ BXi . So it remains to
verify that B∗ ⊂ (1Y × fi)[B∗i ].

Let (y, x) ∈ B∗ imply pX(y, x) = x ∈ fi[Bi]. Hence, there exists xi ∈ Bi with
x = fi(xi). Now we put zi := (y, xi), consequently, (1Y ×fi)(zi) = (1Y ×fi)(y, xi)
implying (y, fi(xi)) = (y, x). On the other hand, zi ∈ B∗i is true, because piY (zi) =
piY (y, xi) = y and pXi(z

i) = pXi(y, xi) = xi. Thus, our assumed inclusion holds.
In addition 1Y × fi : (Y ×Xi,BY ×BXi , µY ×µi) −→ (Y ×X,BY ×BIX , µY ×µXI )
satisfies (buc2) for each i ∈ I. So let for i ∈ I, U∗ ∈ µY × µi. We have to verify
that ((1Y × fi) × (1Y × fi))(U∗) ∈ µY × µXI is valid. By the hypothesis, we get
(piY × piY )(U∗) ∈ µY and (pXi × pXi)(U∗) ∈ µi. Now we will show that

(i) (piY × piY )(U∗) ⊂ (pY × pY )((1Y × fi)× (1Y × fi))(U∗) and
(ii) (fi × fi)((pXi × pXi)(U∗) ⊂ (pX × pX)((1Y × fi)× (1Y × fi))(U∗)

are true. Then, the claim immediately follows.
To (i): R∗ ∈ (piY × piY )(U∗) implies R∗ ⊃ (piY × piY )[U∗] for some U∗ ∈ U∗. It

remains to prove the inclusion (piY ×piY )[U∗] ⊃ (pY ×pY )[((1Y ×fi)×(1Y ×fi))[U∗]].
z ∈ (pY ×pY )[((1Y ×fi)× (1Y ×fi))[U∗]] implies z = (pY ×pY )(s) for some s ∈

((1Y ×fi)×(1Y ×fi))[U∗], hence, s = ((1Y ×fi)×(1Y ×fi))(u∗) for some u∗ ∈ U∗.
Consequently, u∗ = (u, v) for elements u, v ∈ Y ×Xi. It follows that u = (y1, x

1
i )

and v = (y2, x
2
i ) for y1, y2 ∈ Y and x1i , x

2
i ∈ Xi. Thus, we get s = ((1Y ×fi)×(1Y ×

fi))(u
∗) = ((1Y ×fi)×(1Y ×fi))(u, v) = ((1Y ×fi)×(1Y ×fi))((y1, x1i ), (y2, x2i )) =

((1Y × fi)(y1, x1i )), (1Y × fi)(y2, x2i )) = ((y1, fi(x
1
i )), (y2, fi(x

2
i )). Hence,

z = (pY × pY )(s) = (pY × pY )((y1, fi(x
1
i )), (y2, fi(x

2
i ))

= (pY (y1, fi(x
1
i ), pY (y2, fi(x

2
i )) = (y1, y2).

On the other hand, we have (piY ×piY )(u∗) ∈ (piY ×piY )[U∗] with (piY ×piY )(u∗) =
(piY × piY )((u, v)) = (piY (u), piY (v)) = (piY (y1, x

1
i ), p

i
Y (y2, x

2
i ) = (y1, y2).

To (ii): R ∈ (fi × fi)((pXi × pXi)(U∗)) implies R ⊃ (fi × fi)[S] for some
S ∈ (pXi × pXi)(U∗). Consequently, S ⊃ (pXi × pXi)[U

∗] for some U∗ ∈ U∗.
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Hence(fi × fi)[S] ⊃ (fi × fi)[(pXi × pXi)][U∗]] = (pX × pX)[((1Y × fi) × (1Y ×
fi))[U

∗]] ∈ (pX × pX)((1Y × fi) × (1Y × fi))(U∗)), because of the commutative
diagram, and the claim follows.

Next, we will show that the inclusion µY × µXI ⊂ µ
Y×X
I holds.

U∗ ∈ µY × µXI implies (pY × pY )(U∗) ∈ µY and (pX × pX)(U∗) ∈ µXI . Hence,
we can find i ∈ I and Ui ∈ µi(fi × fi)(Ui) ⊂ (pX × pX)(U∗). Now we put :
U∗i := {R ⊂ (Y ×Xi)× (Y ×Xi) : ∃ S ∈ (pY × pY )(U∗),∃ U ∈ Ui such that R ⊃
(piY × piY )−1[S] ∩ (pXi × pXi)

−1[U ]}. Then, U∗i ∈ µY × µi, since the following
inclusions hold:

(1) (piY × piY )(U∗i ) ⊃ (pY × pY )(U∗) and
(2) (pXi × pXi)(U∗i ) ⊃ Ui.

To (1): S ∈ (pY × pY )(U∗) implies S ⊃ (pY × pY )[U∗] for some U∗ ∈ U∗. Choose
U ∈ Ui, hence, (piY ×piY )−1[(pY ×pY )[U∗]]∩(pXi×pXi)−1[U ] ∈ U∗i . Consequently,
(piY ×piY )[(piY ×piY )−1[(pY ×pY )[U∗]] ∈ U∗i follows, and (pY ×pY )[U∗] ∈ U∗i results,
showing that S ∈ U∗i is valid.

To (2): For U ∈ Ui, choose U∗ ∈ U∗, hence, (pY × pY )[U∗] ∈ (pY × pY )(U∗)
and, consequently, (piY × piY )−1[(pY × pY )[U∗]]∩ (pXi × pXi)−1[U ] ∈ U∗i . But then
U = (pXi × pXi)[(pXi × pXi)−1[U ]] ∈ (pXi × pXi)(U∗i ) follows.

Now if we can show that ((1Y × fi)× (1Y × fi))(U∗i ) ⊂ U∗ is true, the proposed
claim follows. V ∈ ((1Y ×fi)×(1Y ×fi))(U∗i ) implies V ⊃ ((1Y ×fi)×(1Y ×fi))[R]
for some R ∈ U∗i . Hence, we can find S ∈ (pY × pY )(U∗) and U ∈ Ui such that
R ⊃ (piY × piY )−1[S] ∩ (pXi × pXi)−1[U ]. Then, (fi × fi)[U ] ∈ (pX × pX)(U∗) is
valid according To (2) and, consequently, (fi × fi)[U ] ⊃ (pX × pX)[U∗] for some
U∗ ∈ U∗. S ⊃ (pY × pY )[V ∗] for some V ∗ ∈ U∗ and, thus, S∗ := U∗ ∩ V ∗ ∈ U∗
follows. Now, it remains to verify that the inclusion S∗ ⊂ ((1Y ×fi)×(1Y ×fi))[R]
holds. z ∈ S∗ implies z ∈ U∗∩V ∗, hence, z = (r, v) for r, v ∈ (Y ×X)×(Y ×X) so
that r = (y1, x1) and v = (y2, x2) for elements y1, y2 ∈ Y and x1, x2 ∈ X. Hence,
(pX × pX)(z) = (pX × pX)(r, v) = (pX(r), pX(v)) = (pX(y1, x1), pX(y2, x2)) =
(x1, x2) ∈ (fi × fi)[U ] follows. But then we can find w ∈ U such that (x1, x2) =
(fi×fi)(w) for w = (z1i , z

2
i ) with z1i , z

2
i ∈ Xi×Xi. (fi×fi)(w) = (fi×fi)(z1i , z2i ) =

(fi(z
1
i ), fi(z

2
i )), and x1 = fi(z

1
i ), x2 = fi(z

2
i ) are resulting. Consequently, (pY ×

pY )(z) = (pY (r), pY (v)) = (pY (y1, x1), pY (y2, x2)) = (y1, y2) ∈ S follows. On
the other hand, ((y1, z

1
i ), (y2, z

2
i )) ∈ (piY × piY )−1[S] ∩ (pXi × pXi)

−1[U ] is true
because (piY × piY )((y1, z

1
i ), (y2, z

2
i )) = (piY (y1, z

1
i ), piY (y2, z

2
i )) = (y1, y2) ∈ S by

the hypothesis, since (pXi × pXi)((y1, z1i ), (y2, z
2
i )) = (pXi(y1, z

1
i ), pXi(y2, z

2
i )) =

(z1i , z
2
i ) ∈ U implying ((y1, z

1
i ), (y2, z

2
i )) ∈ R and, consequently, ((1Y × fi)× (1Y ×

fi))((y1, z
1
i ), (y2, z

2
i )) ∈ ((1Y × fi) × (1Y × fi))[R]. But z = ((1Y × fi) × (1Y ×

fi))((y1, z
1
i ), (y2, z

2
i )). Taking our results into account, we get BY × BIX ⊂ BIY×X

and µY × µXI ⊂ µ
Y×X
I , which means (BY ×BIX , µY × µXI ) ≤ (BIX×Y , µ

Y×X
I ). But

then the equality holds, since (BIX×Y , µ
Y×X
I ) is the finest b-uniform filter structure

on Y ×X with respect to the given data, see Proposition 2.11. �

Remark 3.4. Since b-UFIL is a Cartesian closed topological construct, it
follows that quotient maps are finitely productive, but not necessarily productive
(i.e., not closed under the formation of arbitrary products). Later, we will see
that, in b-UFIL, this nice property holds in addition.
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4. On one-point extensions

As seen above, final epi-sinks play an important role if one considers Cartesian
closedness. In what follows, they also are of interest in connection with the so-
called extensionality of a topological construct C because, in C, final epi-sinks are
hereditary if and only if C is extensional, see [11].

Definition 4.1. A topological construct C is called extensional (hereditary)
provided that every C-object X has a one-point extension X∗ as C-object, i.e.,
every C-object X can be embedded via the addition of a single point ∞ into a
C-object X∗ such that, for every C-morphism f : A −→ X whose domain is
a subobject of an C-object Y , the map f∗ : Y −→ X∗ defined by

f∗(y) :=

{
f(y), if y ∈ A;
∞, if y ∈ Y \A.

is a C-morphism , i.e., the following diagram commutes.

j
Y

f

A

f∗

X∗ := X ∪ {∞}
i

X

Theorem 4.2. In b-UFIL every b-uniform filter space (X,BX , µ) has a one-
point extension.

Proof. For a b-uniform filter space (X,BX , µ), we put X∗ := X ∪ {∞} with
∞ /∈ X. Now, we set BX∗

:= BX ∪ {{∞}} and µ∗ := {V ∈ FIL(X∗ × X∗) :
∃ U ∈ µ such that V ⊃ U∗}, where U∗ := {U∗ : U ∈ U} with U∗ := U ∪ (X∗ ×
{∞})∪ ({∞}×X∗). Then, we claim that (X∗,BX∗

, µ∗) is the one-point extension
of (X,BX , µ) in b-UFIL. Evidently, (BX∗

, µ∗) satisfies the axioms (buf1), (buf2)
and (buf4) for being a b-uniform filter structure on X∗.

To (buf3): Let B ∈ BX∗\{∅}. In the first case, if B ∈ BX\{∅}, then
•
B ×

•
B∈ µ

is valid. But
•
B ×

•
B⊃ (

•
B ×

•
B)∗ because U∗ ∈ (

•
B ×

•
B)∗ implies U∗ = U ∪ (X∗ ×

{∞})∪ ({∞}×X∗) with U ∈
•
B ×

•
B. Hence, U ⊃ B×B, and U∗ ∈

•
B ×

•
B follows.

In the second case, if B = {∞}, then choose U ∈ µ, hence,
•
B ×

•
B=

•∞ × •∞⊃ U∗,
since U∗ ∈ U∗ implies U∗ = U ∪ (X∗ × {∞}) ∪ ({∞} × X∗) for some U ∈ U .

Consequently, U∗ ⊃ {∞} × {∞}, and U∗ ∈
•
B ×

•
B is true.

Further, we indicate that (X,BX , µ) is a b-uniform filter subspace of

(X∗,BX
∗
, µ∗)

which means that (BX , µ) is the coarsest b-uniform filter structure on X such
that i : (X,BX , µ) −→ (X∗,BX∗

, µ∗) is b-uniformly continuous. Evidently, the
inclusion map i : X −→ X∗ is buc. Now, let (AX , µX) be a b-uniform filter
structure on X such that i : (X,AX , µX) −→ (X∗,BX , µ∗) is buc, hence, AX ⊂
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BX . Since A ∈ AX implies i(A) = A 6= {∞}, A ∈ BX follows. Now let V ∈
µX , then, by the hypothesis, (i × i)(V) ∈ µ∗. At once we can find U ∈ µ with
(i × i)(V) ⊃ U∗. Our goal is to verify U ⊂ V. U ∈ U implies U∗ ∈ (i × i)(V),
hence, U∗ ⊃ (i × i)[V ] for some V ∈ V. But (i × i)[V ] = V , and (x1, x2) ∈ V
implies x1 6= ∞ 6= x2. Consequently, U ⊃ V follows, and U ∈ V results. Taking
our two results into account, we get (AX , µX) ≤ (BX , µ), which proves the claim.

Next, let (Y,BY , µY ) be a b-uniform filter space, (A,BA, µA) b-uniform filter
subspace of (Y,BY , µY ) and f : (A,BA, µA) −→ (X,BX , µ) b-uniformly continuous
map, then we claim that f∗ : (Y,BY , µY ) −→ (X∗,BX∗

, µ∗) is buc, where f∗ is
defined by setting:

f∗(y) :=

{
f(y) for each y ∈ A;
∞ for each y ∈ Y \A.

To (buc1): Let B ∈ BY . If f∗[B] = {∞}, then there is nothing to show. In the
case of ∞ /∈ f∗[B], B ∩ A ∈ BA, and, by the hypothesis, f [B ∩ A] ∈ BX follows.
We will show that f∗[B] ⊂ f [B ∩ A] holds. z ∈ f∗[B] implies z = f∗(y) for some
y ∈ B. If assuming y ∈ Y \A, f∗(y) =∞ follows, which is a contradiction. Hence,
the claim is true.

To (buc2): Let U ∈ µY , hence, UA ∈ µA, see Proposition 2.7. By the hypothesis,
we get (f × f)(UA) ∈ µ. Now we will show that (f∗ × f∗)(U) ⊃ ((f × f)(UA))∗ is
true. Let R∗ for R ∈ (f × f)(UA) be given, hence, R ⊃ (f × f)[V ] for V ∈ UA.
Then, R∗ = R∪ (X∗ ×{∞})∪ ({∞}∪X∗) ⊃ (f × f)(V ) with V = U ∩A×A for
some U ∈ U and, consequently, (f∗ × f∗)[U ] ∈ (f∗ × f∗)(U) is valid. It remains
to verify (f∗ × f∗)[U ] ⊂ R∗. Let a ∈ (f∗ × f∗)[U ], hence, a = (f∗ × f∗)(b)
for some b ∈ U , hence, b = (y1, y2) for some pair (y1, y2) ∈ U . Consequently,
a = (f∗(y1), f∗(y2)) follows. In the case of f∗(y1) =∞ = f∗(y2), a ∈ R∗ results.

In the case of (y1, y2) ∈ U ∩ A × A, (f∗(y1), f∗(y2)) = (f(y1), f(y2)) = (f ×
f)(y1, y2) ∈ (f ×f)[V ] ⊂ R∗, implying a ∈ R∗. If f∗(y1) = f(y1) and f∗(y2) =∞,
then a = (f(y1),∞) ∈ X∗ × {∞} ⊂ R∗. In the case of f∗(y1) = ∞ and f∗(y2) =
f(y2), a = (∞, f(y2)) ∈ {∞} ×X∗ ⊂ R∗.

Now, to sum up, we can state that b-UFIL forms a quasitopos as indicated. �

5. On the productivity of quotient maps

In a topological construct C a C-morphisms f : (Y, η) −→ (X, ξ), where (Y, η)
and (X, ξ) denote C-objects is an extremal epimorphism in C if and only if f is
a quotient map, i.e., f : X −→ Y is surjective, and ξ is the final C-structure on
X, meaning that (f : Y −→ X) is a final epi-sink. By transforming this fact

into b-UFIL, we can state that ξ consists of the pair (BfX , µXf ) with BfX = {B ⊂
X : ∃ D ∈ BY such that f [D] ⊃ B} and µXf = {U ∈ FIL(X × X) : ∃ V ∈
µY such that (f × f)(V) ⊂ U}, where (Y,BY , µY ) denotes the proposed b-uniform
filter space. Then, in b-UFIL the following proposition holds:

Proposition 5.1. In b-UFIL, products of quotient maps are quotient maps
again.
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Proof. In order to prove this statement in b-UFIL, let (fi : (Yi,BYi , µYi) −→
(Xi,BXi , µXi))i∈I be a non-empty family of quotient maps in b-UFIL and con-
sider the following product diagram in b-UFIL, where Y :=

∏
i∈I Yi and X =∏

i∈I Xi, and pYi , pXi , respectively, denote the prevailing projections, see Propo-
sition 2.2. ∏

fi
(X,BXI , µIX)

pYi

(Y,BYI , µIY )

pXi

(Xi,BXi , µXi)
fi

(Yi,BYi , µYi)

Since all fi are surjective,
∏
fi is surjective. For each i ∈ I, BXi = BfiXi and

µXi = µXifi , because fi is a quotient map. Now, we consider the pair (EX , µX),

where EX := {D ⊂ X : ∃G ∈ BYI such that D ⊂
∏
fi[G]} and µX := {V ∈

FIL(X ×X) : ∃W ∈ µIY such that (
∏
fi ×

∏
fi)(W) ⊂ V}. Then, the following

equation holds: (BXI , µIX) = (EX , µX), which indicates that
∏
fi is a quotient

map.
To “ ≤ ” : B ∈ BXI implies pXi [B] ∈ BXi for each i ∈ I. Thus, for each i ∈ I,

there is some Bi ∈ BYi with pXi [B] ⊂ fi[Bi]. Then, D :=
∏
i∈I Bi ∈ BYI with B ⊂∏

fi[D], because x ∈ B implies pXi(x) = xi ∈ fi[Bi]. Hence, xi = fi(zi) for some
zi ∈ Bi for each i ∈ I, and consequently z = (zi)i∈I ∈ D with

∏
fi(z) = z by using

the commutativity of the product diagram. Consequently, BXI ⊂ EX is valid. Now
let U ∈ µIX , then, for each i ∈ I, (pXi×pXi)(U) ∈ µXi . Hence, we can find Ui ∈ µYi
with (fi × fi)(Ui) ⊂ (pXi × pXi)(U). If j :

∏
i∈I(Yi × Yi) −→

∏
i∈I Yi ×

∏
i∈I Yi

denotes the canonical isomorphism, i.e., j((yi, zi)) = ((yi), (zi)), and
∏
i∈I Ui the

product filter on
∏
i∈I(Yi × Yi), then j(

∏
i∈I Ui) is a filter on

∏
i∈I Yi ×

∏
i∈I Yi

with (pYi × pYi)(j(
∏
i∈I Ui)) = Ui for each i ∈ I. Thus j(

∏
i∈I Ui) ∈ µIY . If

ĵ :
∏

(Xi ×Xi) −→
∏
i∈I Xi ×

∏
i∈I Xi denotes the canonical isomorphism, then

ĵ−1(
∏
fi×

∏
fi)(j(

∏
i∈I Ui)) ⊂

∏
i∈I(fi×fi)(Ui) ⊂

∏
i∈I(pXi×pXi)(U) ⊂ ĵ−1(U).

Hence, (
∏
fi ×

∏
fi)(j(

∏
i∈I Ui)) ⊂ U , which means that U ∈ µX . Thus, together

we get (BXI , µIX) ≤ (EX , µX). Conversely, let D ∈ EX . Hence, we can find
G ∈ BYI with D ⊂

∏
fi[G]. Then, pYi [G] ∈ BYi for each i ∈ I. Consequently,

fi[pY [G]] ∈ BfiXi follows for each i ∈ I. Since the diagram commutes, the equation

fi[pY [G]] = pXi [
∏
fi[G]] holds for each i ∈ I. But the latter implies

∏
fi[G] ∈ BXI ,

and EX ⊂ BXI follows. At last if V ∈ µX , then there exists W ∈ µIY (
∏
fi ×∏

fi)(W) ⊂ V. Furthermore, (pXi × pXi)((
∏
fi ×

∏
fi)(W)) = (fi × fi)((pYi ×

pYi)(W)) ⊂ (pXi × pXi)(V) for each i ∈ I. Consequently, (pXi × pXi)(V) ∈ µXi is
true for each i ∈ I, and V ∈ µIX results, which means that µX ⊂ µIX is valid and,
thus, concludes the proof. �

Remark 5.2. Following the terminology in [11], we can state that the cate-
gory b-UFIL now forms a strong topological universe and, therefore, makes an
important contribution to the convenient topology.
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Next, we will look at the behavior of certain subconstructs of b-UFIL, i.e., that
of sb-UFIL, the full and isomorphism-closed subconstruct of b-UFIL whose ob-
jects are the symmetric b-uniform filter spaces and that of SETb-UFIL, the full
and isomorphism-closed subconstruct of b-UFIL whose objects are the setcon-
vergent b-uniform filter spaces, see [10].

6. The topological constructs sb-UFIL, b-FIL and SETb-UFIL

First, let us recall the definitions for b-uniform filter spaces to be symmetric and
setconvergent.

Definition 6.1. A b-uniform filter space (X,BX , µ) is called

(i) symmetric, provided that µ satisfies the following condition:
(s) U ∈ µ implies U−1 ∈ µ, where U−1 := {R−1 : R ∈ U} with R−1 :=
{(x, z) ∈ X ×X : (z, x) ∈ R};

(ii) setconvergent, provided that (BX , µ) satisfies the following condition:
(sc) U ∈ µ implies the existence of B ∈ BX\{∅} and F ∈ FIL(X) such

that
•
B ×F ∈ µ with

•
B ×F ⊂ U .

By sb-UFIL and SETb-UFIL, we will denote the full subconstructs of b-UFIL,
whose objects are the symmetric and setconvergent b-uniform filter spaces, respec-
tively.

Remark 6.2. As seen in [10], sb-UFIL is bireflective as well as bicoreflective
in b-UFIL and contains, in particular, the category of semiuniform convergence
spaces in the sense of Preuß and the category b-FIL of b-filter spaces as bireflective
and bicoreflective subconstruct in sb-UFIL. The last mentioned candidates can
be regarded as spaces where the structures (BX , µ) are generated by all their µ-
Cauchy filters and, thus, play an important role if one considers the completeness
of spaces.

In some special cases, filter merotopic spaces or filter spaces [5], respectively,
can be recovered so that the Cauchy spaces or, more specifically, proximity spaces
are integrated as well. In addition, SETb-UFIL is bicoreflective in b-UFIL,
and it is isomorphic to the full subcategory RO-SETCONV of SETCONV,
whose objects are the reordered set-convergence spaces. Let us mention that RO-
SETCONV is bireflective in SETCONV. Reordered set-convergence spaces are
coming into play if one considers point-convergence on arbitrary B-sets. In the
classical case point-convergence on a set, X can be regarded as a relation q ⊂
FIL(X) × X satisfying certain conditions. Hence, the pair (X, q) and the set-
convergence space (X,DX , τq) are essentially the same. Here we note that DX :=
{∅} ∪ {{x} : x ∈ X}, and τq is defined by setting:

F τq ∅ if and only if F = PX;
B ∈ DX\{∅} implies F τq B if and only if F q x for each x ∈ B.

Evidently (X,DX , τq) defines a reordered set-convergence space, which is repointed
by satisfying the following more extended definition:

A set-convergence (BX , τ), where BX is B−set and τ ⊂ FIL(X)×BX , is
called repointed if B ∈ BX\{∅} implies F τ B if F τ {x} for each x ∈ B.
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Evidently, each repointed set-convergence is reordered. But now, under this more
general premise, we are able to consider point-convergence even on arbitrary B-
sets not only restricted to the discrete one. Thus, for example, point-convergence
on the set of finite subsets, compact subsets or totally bounded subsets on a set
X, respectively, can be now described and examined in addition to [4].

By the way, we also note that the full subconstruct rp-SETCONV of RO-
SETCONV, whose objects are the repointed set-convergence spaces is bireflective
in RO-SETCONV. As essence we keep hold that b-UFIL is also a suitable
candidate for studying point-convergence on a more general level than the classical
one. Here we should note that the considered convergence in [4] can be equivalently
described by certain discrete b-uniform filter structures and vice versa. In fact, let
a convergence space (X, ξ) be given in the sense of [4] then the space (X,DX , µξ)
, where µξ := {U ∈ FIL(X × X) : ∃ F ∈ FIL(X) ∃ x ∈ X ((F , x) ∈ ξ and

U ⊃ F× •x} defines a specific discrete b-uniform filter space.
Conversely, if such a specific discrete b-uniform filter space (X,DX , s) is given,

then (X, ηs) is a convergence space, where (F , x) ∈ ηs if and only if F× •
x∈ s.

The just defined assignments are functorial and, thus, determine the proposed
isomorphism.

Theorem 6.3. The topological construct sb-UFIL is Cartesian closed.

Proof. This statement can be proved by purely categorical arguments, see Re-
mark 6.2. and [1]. �

Theorem 6.4. The topological construct b-FIL is Cartesian closed.

Proof. See the above stated references. �

Theorem 6.5. The topological constructs sb-UFIL and b-FIL are both hered-
itary.

Proof. Since b-UFIL is hereditary and sb-UFIL a bicoreflective subconstruct
of b-UFIL, respectively b-FIL a bicoreflective subconstruct of sb-UFIL, which
are both closed under formation of subspaces in its prevailing supercategories,
hence, the statements made are true by applying purely categorical arguments. �

Theorem 6.6. In the topological constructs sb-UFIL and b-FIL, the products
of quotient maps are quotient maps again.

Proof. Since sb-UFIL is bicoreflective in b-UFIL, closed under formation of
products in b-UFIL and in b-UFIL quotients are productive, the claim follows
by purely categorical arguments. Since b-FIL is bireflective in sb-UFIL closed
under formation of quotient objects in sb-UFIL and in sb-UFIL quotients are
productive, then, by using the above mentioned arguments, the claim results. �

Corollary 6.7. The constructs sb-UFIL and b-FIL are forming strong topo-
logical universes.



170 D. LESEBERG and Z. VAZIRY

e

UNIF

e

ULIM

SUCONV

rc

DISb-UFIL ∼= PUCONV

e

b-UFIL

c

Sb-UFIL

c

b-FIL

c r

e

FMER

SETCONV

r

SETb-UFIL ∼= RO-SETCONV

c

e

pCONV

Legend:

e := embedding

c := bicoreflection
r := bireflection
∼=: isomorphism

UFIL := Category of uniform limit spaces
UFIL:= Category of uniform spaces

FMER:= Category of filtermorotopic spaces

pCONV:= Categories of point-convergence spaces, e.g., KENT-convergence spaces, limit
spaces, pseudotopological spaces, pretopological spaces, topological spaces, etc.
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