

A REMARK ON EXTREMALLY μ-DISCONNECTED GENERALIZED TOPOLOGICAL SPACES

BRIJ KISHORE TYAGI AND HARSH V. S. CHAUHAN

Abstract. A more general definition of extremally μ -disconnected generalized topological space [3] is introduced and its properties are studied. We have further improved the definitions of generalized open sets [1] and upper(lower) semi-continuous functions defined for a generalized topological space in [5]. In this generalized framework we obtain the analogues of results in [1, 3, 5]. Examples of extremally μ -disconnected generalized topological spaces are given.

1. INTRODUCTION

Extremally disconnected topological spaces defined by Stone [6] turned out to be non-trivial generalization of the class of discrete spaces. A topological space is said to be extremally disconnected if the closure of every open set is open. The same definition is adapted by Császár [3] in generalized topological spaces as follows: Let X be a set and $\mathcal{P}(X)$ be the power set of X. A subset μ of $\mathcal{P}(X)$ is called generalized topology (GT) on X if μ is closed under arbitrary unions and, in that case, (X,μ) is called a generalized topological space (GTS). The elements of μ are called μ -open sets and their complements are called μ -closed sets. The closure of a set A, denoted by $c_{\mu}A$, is the intersection of μ -closed sets containing A. A GTS (X, μ) is called extremally μ -disconnected if $c_{\mu}U \in \mu$ for each μ -open set U. Our main argument on which this entire paper is based is that $c_{\mu}U$, for any $U \in \mu$, is never in μ unless $X \in \mu$. Therefore, if (X, μ) is not strong, that is, $X \notin \mu$, then (X, μ) is not extremally μ -disconnected since $c_{\mu} \emptyset = X - M_{\mu}$ where $M_{\mu} = \bigcup \{U : U \in \mu\}$ is not μ -open. Hence, the notion of extremally μ -disconnectedness does not act as a classification device in the class of non strong generalized topological spaces. This does not seem to be a very satisfactory situation. To rectify the situation, we have modified the above definition as follows: A GTS (X, μ) is said to be extremally μ -disconnected if $c_{\mu}U \cap M_{\mu} \in \mu$ for each μ -open set U. This definition of course reduces to the standard one if μ is a topology on X. The present paper discusses analogues of various properties of extremally μ -disconnected generalized topological spaces.

There is another direction in which this paper achieves further generalizations. In a GTS (X, μ) , a subset A of X is called μ -semi-open if $A \subseteq c_{\mu}i_{\mu}A$, μ -preopen if

MSC (2010): primary 54A05; secondary 54D15.

Keywords: generalized topological spaces, extremally μ -disconnectedness, μ -connectedness, generalized open sets, μ -upper(lower) semi-continuous mappings.

The second author acknowledges the fellowship grant of University Grant Commission, India.

 $A \subseteq i_{\mu}c_{\mu}A$, μ - α -open if $A \subseteq i_{\mu}c_{\mu}i_{\mu}A$, and μ - λ -open if $A \subseteq c_{\mu}i_{\mu}c_{\mu}A$ [1]: here, $i_{\mu}A$, the interior of A, is the union of all μ -open sets contained in A. In a topological space, the union of open sets, semi-open sets, preopen sets, α -open sets, and λ open sets is the same set, which is equal to X. If a GTS (X, μ) is not strong, the union of μ -open sets is $M_{\mu} \neq X$ whereas, since X is μ -semi-open, the union of μ -semi-open sets is X. The situation for the class of μ - λ -open sets will be similar. Consequently, we modify the definition of a μ -semi-open set A as follows: $A \subseteq c_{\mu}i_{\mu}A \cap M_{\mu}$ [8] and that of a μ - λ -open set as follows : $A \subseteq c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$. Note that, if a GT space is strong, the newly defined notions coincide with the corresponding notion defined above. In this more general framework, we have obtained every result in Sharma [5] and related results in Császár [1,3].

There is a third direction in which further generalization is achieved. Sharma [5] has defined generalized upper semi-continuous(lower semi-continuous) function from a GTS (X, μ) to the real line \mathbb{R} and gave an example showing that these two notions together cannot be equivalent to the notion of generalized continuity [2]. We have replaced the real line \mathbb{R} with a generalized topological space $(R, \tau[a, b])$, where R denotes the set of real numbers, $a, b \in R$ and $\tau[a, b]$ is the GT generated by the generalized basis \mathcal{B} that consist of left open rays [a, c) and right open rays (c, b], a < c < b. This GT is appropriate to obtain the above equivalence. This also ensures that, in an extremally μ -disconnected GTS (X, μ) , there is a rich supply of μ -upper(lower) semi-continuous functions.

The paper is organized as follows. Section 2 contains basic notions and notation used in the paper. In Section 3, we obtain equivalences shown in [5]. Section 4 deals with the μ -upper(μ -lower) semi-continuous functions. Section 5 provides examples of extremally μ -disconnected generalized topological spaces.

2. Preliminaries

Let X be a set. A subset \mathcal{B} of $\mathcal{P}(X)$ is called a *generalized basis* for X [4]. The collection μ of all unions of elements of \mathcal{B} is a GT on X called the *generalized topology* generated by \mathcal{B} . (X, μ) shall be used generically to denote a generalized topological space.

Lemma 2.1. Let (X, μ) be a *GT*-space and $A, B \subseteq X$. Then, the following statements hold.

(i) $x \in c_{\mu}A$ if and only if $x \in U \in \mu$ implies $U \cap A \neq \emptyset$. (ii) If $U, V \in \mu$ and $U \cap V = \emptyset$, then $c_{\mu}U \cap V = \emptyset$ and $U \cap c_{\mu}V = \emptyset$. (iii) $c_{\mu}A = X - i_{\mu}(X - A)$ for any $A \subseteq X$. (iv) $c_{\mu}A = c_{\mu}(A \cap M_{\mu})$. (v) For any set $A \subseteq X$, $i_{\mu}c_{\mu}i_{\mu}c_{\mu}A = i_{\mu}c_{\mu}A$ and $c_{\mu}i_{\mu}c_{\mu}i_{\mu}A = c_{\mu}i_{\mu}A$.

Recall that a set A is said to be μ -semi-open if $A \subseteq c_{\mu}i_{\mu}A \cap M_{\mu}$, μ -preopen if $A \subseteq i_{\mu}c_{\mu}A$, μ - α -open if $A \subseteq i_{\mu}c_{\mu}i_{\mu}A$ and μ - β -open if $A \subseteq c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$. The collection of all μ -semi-open (μ -preopen, μ - α -open, μ - β -open) sets are denoted by $s_{\mu},(\pi_{\mu},\alpha_{\mu},\beta_{\mu})$. These sets are GT's on X and the following inclusions hold.

Theorem 2.2. (i)
$$\mu \subseteq \alpha_{\mu} \subseteq s_{\mu} \subseteq \beta_{\mu}$$
.
(ii) $\alpha_{\mu} \subseteq \pi_{\mu} \subseteq \beta_{\mu}$.

The sets U and V in a GT space (X, μ) are said to be μ -separated if $c_{\mu}U \cap V = \emptyset$ and $U \cap c_{\mu}V = \emptyset$.

A subset S in a GT-space (X, μ) is said to be μ -connected [7] if $S \cap M_{\mu} = U \cup V$ where U and V are μ -separated sets implies $U = \emptyset$ or $V = \emptyset$. (X, μ) is said to be μ -connected if it is a μ -connected subset of itself.

The following lemmas are immediate.

Lemma 2.3. If μ and μ' are GTs on a set X, then $\mu \subseteq \mu'$ implies $c_{\mu'}A \subseteq c_{\mu}A$ for all $A \subseteq X$.

Lemma 2.4. Let μ and μ' be GTs on a set X and $\mu \subseteq \mu'$. If U and V are μ -separated, then U and V are μ' -separated.

Theorem 2.5. Let μ and μ' be GTs on a set X with $\mu \subseteq \mu'$. Then, a μ' -connected set is μ -connected.

Theorem 2.6 ([7]). The following statements are equivalent.

- (i) (X, μ) is μ -connected.
- (ii) If $M_{\mu} = G \cup G'$, $G, G' \in \mu$, $G \cap G' = \emptyset$, then $G = \emptyset$ or $G' = \emptyset$.

A GT-space (X, μ) is called μ -irreducible [5] if, for each non-empty pair of μ open sets U and V, $U \cap V \neq \emptyset$.

In view of 2.5, the following implications are immediate.

Theorem 2.7. $\pi_{\beta_{\mu}} = \beta_{\beta_{\mu}} = \beta_{\mu}$.

Proof. Since $A \subseteq c_{\mu}A$, $c_{\beta_{\mu}}A \subseteq c_{\beta_{\mu}}c_{\mu}A \subseteq c_{\mu}c_{\mu}A = c_{\mu}A$ by Lemma 2.3. If $B \in \beta_{\mu}$ and $B \subseteq c_{\beta_{\mu}}A$, then $B \subseteq c_{\mu}i_{\mu}c_{\mu}B \cap M_{\mu}$ and $B \subseteq c_{\mu}A$. So that $B \subseteq c_{\mu}i_{\mu}c_{\mu}c_{\mu}A \cap M_{\mu} = c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$. Hence, $i_{\beta_{\mu}}c_{\beta_{\mu}}A \subseteq c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$. On the other hand $X - c_{\mu}i_{\mu}c_{\mu}A \subseteq X - i_{\mu}c_{\mu}i_{\mu}c_{\mu}A = c_{\mu}(X - c_{\mu}i_{\mu}c_{\mu}A) = c_{\mu}i_{\mu}(X - i_{\mu}c_{\mu}A) = c_{\mu}i_{\mu}c_{\mu}A) = c_{\mu}i_{\mu}c_{\mu}A \subseteq M_{\mu}$, $X - c_{\mu}i_{\mu}c_{\mu}A \in \beta_{\mu}$. This together with $i_{\beta_{\mu}}c_{\beta_{\mu}}A \subseteq c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$ gives the inclusion $c_{\beta_{\mu}}i_{\beta_{\mu}}c_{\beta_{\mu}}A \subseteq c_{\beta_{\mu}}(c_{\mu}i_{\mu}c_{\mu}A) = c_{\mu}i_{\mu}c_{\mu}A$, that is, $\beta_{\beta_{\mu}} \subseteq \beta_{\mu}$. Also $\beta_{\mu} \subseteq \pi_{\beta_{\mu}} \subseteq \beta_{\beta_{\mu}} \subseteq \beta_{\mu}$ by 2.2.

Corollary 2.8. $\alpha_{\beta_{\mu}} = s_{\beta_{\mu}} = \beta_{\mu}$.

Proof. $\beta_{\mu} \subseteq \alpha_{\beta_{\mu}} \subseteq s_{\beta_{\mu}} \subseteq \beta_{\beta_{\mu}} = \beta_{\mu}$ by 2.2 and 2.7.

3. Extremally μ - disconnected generalized topological spaces

Definition 3.1. A GTS (X, μ) is called *extremally* μ -disconnected if $c_{\mu}U \cap M_{\mu} \in \mu$ for every $U \in \mu$.

Theorem 3.2. A GTS (X, μ) is extremally μ -disconnected if and only if, for any disjoint μ -open sets U and V, $c_{\mu}U \cap c_{\mu}V \cap M_{\mu} = \emptyset$. Proof. Let (X, μ) be extremally μ -disconnected and U and V be disjoint μ open sets. Thus, $c_{\mu}U \cap V = \emptyset$ and $U \cap c_{\mu}V = \emptyset$. Then, $c_{\mu}U \cap M_{\mu} \cap V = \emptyset$ and $U \cap c_{\mu}V \cap M_{\mu} = \emptyset$. Since $c_{\mu}U \cap M_{\mu} \in \mu$, it follows that $c_{\mu}U \cap c_{\mu}V \cap M_{\mu} = \emptyset$. Conversely, assume that $c_{\mu}U \cap c_{\mu}V \cap M_{\mu} = \emptyset$. Let $W \in \mu$. If $c_{\mu}W = X - M_{\mu}$ then $c_{\mu}W \cap M_{\mu} = \emptyset \in \mu$. Now W and $X - c_{\mu}W$ are disjoint so that $c_{\mu}W \cap$ $c_{\mu}(X - c_{\mu}W) \cap M_{\mu} = \emptyset$. Hence, $c_{\mu}W \cap M_{\mu} \subseteq X - c_{\mu}(X - c_{\mu}W) = i_{\mu}c_{\mu}W$. Since $i_{\mu}c_{\mu}W \subseteq c_{\mu}W \cap M_{\mu}, c_{\mu}W \cap M_{\mu} \in \mu$.

Theorem 3.3. A GTS (X, μ) is extremally μ -disconnected if and only if, for each $U \in \mu$ and μ -closed set F such that $U \subseteq F$, there exist a $V_1 \in \mu$ and a μ -closed set F_1 such that $U \subseteq F_1 \cap M_\mu \subseteq V_1 \subseteq F$.

Proof. Let (X, μ) be extremally μ -disconnected. Let $U \in \mu$ and F be a μ -closed set with $U \subseteq F$. Then, $U \cap (X - F) = \emptyset$ and, by 3.2 $c_{\mu}U \cap c_{\mu}(X - F) \cap M_{\mu} =$ \emptyset , that is, $c_{\mu}U \cap M_{\mu} \subseteq X - c_{\mu}(X - F)$. Since $i_{\mu}F = X - c_{\mu}(X - F) \subseteq F$, $U \subseteq c_{\mu}U \cap M_{\mu} \subseteq i_{\mu}F \subseteq F$. Conversely, let U and V be disjoint μ -open sets. Then, $U \subseteq X - V$. Then, by our assumption, there exist a $V_1 \in \mu$ and a μ closed set F such that $U \subseteq F_1 \cap M_{\mu} \subseteq V_1 \subseteq (X - V)$. Then, it follows that $c_{\mu}U \cap c_{\mu}V \cap M_{\mu} = \emptyset$.

Theorem 3.4. If (X, μ) is an extremally μ -disconnected GTS, then the following statements are equivalent:

- (i) (X, π_{μ}) is π_{μ} -connected.
- (ii) (X, β_{μ}) is β_{μ} -connected.
- (iii) $(X, s_{\beta_{\mu}})$ is $s_{\beta_{\mu}}$ -connected.
- (iv) (X, β_{μ}) is β_{μ} -irreducible.

Proof. (i) \Rightarrow (ii) Suppose that (X, β_{μ}) is not β_{μ} -connected. Then, by 2.6, there are disjoint non-empty β_{μ} -open sets U and V such that $M_{\beta_{\mu}} = U \cup V$. Then, $U \subseteq c_{\mu}i_{\mu}c_{\mu}U \cap M_{\mu}$ and $V \subseteq c_{\mu}i_{\mu}c_{\mu}V \cap M_{\mu}$. Since (X, μ) is extremally μ -disconnected, $i_{\mu}(c_{\mu}i_{\mu}c_{\mu}U \cap M_{\mu}) = c_{\mu}i_{\mu}c_{\mu}U \cap M_{\mu}$ and $i_{\mu}(c_{\mu}i_{\mu}c_{\mu}V \cap M_{\mu}) = c_{\mu}i_{\mu}c_{\mu}V \cap M_{\mu}$. Therefore, $U \subseteq i_{\mu}c_{\mu}i_{\mu}c_{\mu}U = i_{\mu}c_{\mu}U$. Similarly, $V \subseteq i_{\mu}c_{\mu}U$. So U and V are π_{μ} - open, which means that (X, π_{μ}) is not π_{μ} -connected.

(ii) \Leftrightarrow (iii) holds because $s_{\beta_{\mu}} = \beta_{\mu}$ by 2.8.

(ii) \Rightarrow (iv) Suppose that (X, β_{μ}) is not β_{μ} -irreducible. Then, there are non-empty disjoint β_{μ} -open sets U and V. Let $P = c_{\mu}U \cap M_{\mu}$ and $Q = X - c_{\mu}U$. Since $U \subseteq c_{\mu}i_{\mu}c_{\mu}U \cap M_{\mu}$, $c_{\mu}U \subseteq c_{\mu}(c_{\mu}i_{\mu}c_{\mu}U \cap M_{\mu}) = c_{\mu}c_{\mu}i_{\mu}c_{\mu}U = c_{\mu}i_{\mu}c_{\mu}(c_{\mu}U) = c_{\mu}i_{\mu}c_{\mu}(c_{\mu}U \cap M_{\mu})$ by 2.1. Therefore, $c_{\mu}U \cap M_{\mu} \subseteq c_{\mu}i_{\mu}c_{\mu}(c_{\mu}U \cap M_{\mu}) \cap M_{\mu}$. Consequently, $P \in \beta_{\mu}$. Since $\mu \subseteq \beta_{\mu}$, $Q \in \beta_{\mu}$. Since $M_{\mu} = M_{\beta_{\mu}}, M_{\beta_{\mu}} = P \cup Q$. So, (X, β_{μ}) is not β_{μ} -connected.

(iv) \Rightarrow (i) holds because $\pi_{\mu} \subseteq \beta_{\mu}$ by 2.2.

Theorem 3.5. In an extremally μ -disconnected GTS (X, μ) , the following statements hold:

(i) $\beta_{\mu} = \pi_{\mu}$. (ii) $s_{\mu} = \alpha_{\mu}$. (iii) $s_{\mu} \subseteq \pi_{\mu}$. Proof. (i) $\pi_{\mu} \subseteq \beta_{\mu}$ by 2.2. Let $A \in \beta_{\mu}$. Then, $A \subseteq c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$. Since X is extremally μ -disconnected, $c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu} \in \mu$. Therefore, $i_{\mu}(c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}) = c_{\mu}i_{\mu}c_{\mu}A \cap M_{\mu}$. Thus, $A \subseteq i_{\mu}c_{\mu}i_{\mu}c_{\mu}A = i_{\mu}c_{\mu}A$. (ii) $\alpha_{\mu} \subseteq s_{\mu}$ by 2.2. So, we will prove that $s_{\mu} \subseteq \alpha_{\mu}$. $A \in s_{\mu}$ implies $A \subseteq c_{\mu}i_{\mu}A \cap M_{\mu} \in \mu$. Therefore, $A \subseteq i_{\mu}(c_{\mu}i_{\mu}A \cap M_{\mu}) \subseteq i_{\mu}c_{\mu}i_{\mu}A$.

(iii) holds by (i) and 2.2.

Corollary 3.6. For an extremally μ -disconnected GTS (X, μ) , the following three conditions are equivalent:

- (i) (X, π_{μ}) is irreducible,
- (ii) (X, β_{μ}) is β_{μ} -irreducible,
- (iii) (X, β_{μ}) is β_{μ} -connected.

A point $x \in X$ of a GTS (X, μ) is a point of extremal μ -disconnectedness of X if there are no disjoint μ -open sets U and V such that $x \in c_{\mu}U \cap c_{\mu}V \cap M_{\mu}$. Observe that every point in $X - M_{\mu}$ is a point of extremal μ -disconnectedness.

Theorem 3.7. A GTS (X, μ) is extremally μ -disconnected space if and only if every point of X is a point of extremal μ -disconnectedness.

Theorem 3.8. An extremally μ -disconnected GTS (X, μ) is μ -connected if and only if $M, N \in \mu, M \neq \emptyset, N \neq \emptyset$ imply $M \cap N \neq \emptyset$.

Proof. The condition is clearly sufficient in view of 2.6 and the property of extremal μ -disconnectedness is not required here. Conversely, we assume that $U, V \in \mu$, $U \neq \emptyset$, $V \neq \emptyset$ imply $U \cap V = \emptyset$. Then, $\emptyset \neq U \subseteq c_{\mu}U \cap M_{\mu} \subseteq (X - V) \cap M_{\mu} \neq M_{\mu}$ and $c_{\mu}U \cap M_{\mu} \in \mu$ because (X, μ) is extremally μ -disconnected GTS. So that $M_{\mu} = (c_{\mu}U \cap M_{\mu}) \cup (X - c_{\mu}U)$ which contradicts the μ -connectedness of (X, μ) .

4. (μ, τ) -upper (lower) semi-continuous functions

Definition 4.1. Let (X, μ) be a GTS and R be the set of real numbers with GT $\tau[a, b]$, $a, b \in R$, generated by the generalized basis \mathcal{B} consisting of left open rays [a, c) and right open rays (c, b], a < c < b. A function $f : (X, \mu) \to (R, \tau[a, b])$ is called (μ, τ) -upper semi-continuous $((\mu, \tau)$ -lower semi-continuous) if $f^{-1}([a, c))(f^{-1}((c, b]))$ is μ -open for every c with a < c < b.

Let (X, μ) and (Y, τ) be GTSs. A mapping $f : X \to Y$ is said to be (μ, τ) continuous ([2]) if $f^{-1}(U)$ is μ -open for each τ -open set $U \subseteq Y$.

Theorem 4.2. A function $f : (X, \mu) \to (R, \tau[a, b])$ is (μ, τ) -continuous if and only if f is both (μ, τ) -upper semi-continuous and (μ, τ) -lower semi-continuous.

Proof. Let G be τ -open. Then, G is a union of μ -open sets in \mathcal{B} . Since f is both (μ, τ) -upper semi-continuous and (μ, τ) -lower semi-continuous, the inverses of these μ -open sets in \mathcal{B} are μ -open. Hence, $f^{-1}(G)$ is μ -open and so f is (μ, τ) -continuous. The converse is obvious.

Theorem 4.3. A function $f : (X, \mu) \to (R, \tau[a, b])$ is (μ, τ) -upper semicontinuous if and only if $cf : (X, \mu) \to (R, \tau[ca, cb])$ $(cf : (X, \mu) \to (R, \tau[cb, ca]))$ is (μ, τ) -upper (lower) semi-continuous for every c > 0 (c < 0). **Theorem 4.4.** A function $f : (X, \mu) \to (R, \tau[a, b])$ is (μ, τ) - lower semicontinuous if and only if $cf : (X, \mu) \to (R, \tau[ca, cb])$ $(cf : (X, \mu) \to (R, \tau[cb, ca]))$ is (μ, τ) -lower (upper) semi-continuous for every c > 0 (c < 0).

Theorem 4.5. A function $f : (X, \mu) \to (R, \tau)[a, b]$ is (μ, τ) - upper (lower) semi-continuous if and only if $f + t : (X, \mu) \to (R, \tau[a + t, b + t])$ is (μ, τ) -upper (lower) semi-continuous for every $t \in \mathbb{R}$.

In the following theorem, the condition of strong GTS is not required, thereby, improving Theorem 2.5 [5].

Theorem 4.6. Let (X, μ) be GTS. Then, a subset $A \subseteq X$ is μ -open (μ -closed) if and only if its characteristic function $\chi_A : (X, \mu) \to (R, \tau[0, 1])$ is (μ, τ) -lower semi-continuous ((μ, τ) -upper semi-continuous).

Theorem 4.7. Let (X, μ) be an extremally μ -disconnected GTS. Let U and V be two disjoint μ -open sets. Then, there exists a (μ, τ) -upper semi-continuous function $f : (X, \mu) \to (R, \tau[0, 1])$ such that $f(U) = \{0\}$ and $f(V) = \{1\}$.

Proof. Since $U \subseteq X - V$, by 3.3, there exist a $G_{1/2} \in \mu$ and a μ -closed set $F_{1/2}$ such that $U \subseteq F_{1/2} \cap M_{\mu} \subseteq G_{1/2} \subseteq X - V$ Again, since $U \subseteq F_{1/2}$ and $G_{1/2} \subseteq X - V$, there exist μ -open sets $G_{1/4}, G_{3/4}$ and μ -closed sets $F_{1/4}, F_{3/4}$ such that

 $U \subseteq F_{1/4} \cap M_{\mu} \subseteq G_{1/4} \subseteq F_{1/2}$ and $G_{1/2} \subseteq F_{3/4} \cap M_{\mu} \subseteq G_{3/4} \subseteq X - V$ Thus,

U $\subseteq F_{1/4} \cap M_{\mu} \subseteq G_{1/4} \subseteq F_{1/2} \cap M_{\mu} \subseteq G_{1/2} \subseteq F_{3/4} \cap M_{\mu} \subseteq G_{3/4} \subseteq X - V$ By induction, for each dyadic rational number of the form $t = \frac{m}{2^n}, n = 1, 2, \ldots$ and $m = 1, 2, \ldots 2^n - 1$, we may show that, for $t_1 < t_2$, there are μ -open sets G_{t_1} and G_{t_2} and μ -closed sets F_{t_1} and F_{t_2} such that

$$U \subseteq F_{t_1} \cap M_{\mu} \subseteq G_{t_1} \subseteq F_{t_2} \cap M_{\mu} \subseteq G_{t_2} \subseteq X - V$$

Now we define a function $f: (X, \mu) \to (R, \tau[0, 1])$ as follows:

$$f(x) = \begin{cases} 0, & \text{if } x \in G_t \text{ for all } t, \\ \sup \{t : x \notin G_t\}, & \text{if } x \in M_\mu - \cap_t G_t, \\ \alpha \in R - [0, 1], & \text{if } x \in X - M_\mu. \end{cases}$$

Then, f(U) = 0 and f(V) = 1. We will show that f is (μ, τ) -upper semi-continuous, that is, $f^{-1}([0, a)), 0 < a < 1$, is μ - open. Now $x \in f^{-1}([0, a))$ implies f(x) < a. So, there must be a dyadic rational t < a such that $x \in G_t$. Thus, $f^{-1}([0, a)) \subseteq \bigcup_{t < a} G_t$. On the other hand, if $x \in \bigcup_{t < a} G_t$, then $x \in G_{t_0}$ for some $t_0 < a, f(x) \le t_0 < a$. So, $x \in f^{-1}([0, a))$. Therefore, f is (μ, τ) -upper semi-continuous.

Corollary 4.8. Let (X, μ) be an extremally μ -disconnected GTS. Let U and V be two disjoint μ -open sets. Then, there exists a (μ, τ) -lower semi-continuous function $f : (X, \mu) \to (R, \tau[0, 1])$ such that $f(U) = \{0\}$ and $f(V) = \{1\}$.

Proof. By Theorem 4.7, there exists a (μ, τ) -upper semi-continuous function f such that $f(U) = \{1\}$ and $f(V) = \{0\}$. Thus -f+1 is (μ, τ) -lower semi-continuous and $(-f+1)(U) = \{0\}$ and $(-f+1)(V) = \{1\}$.

5. Examples of Extremally μ -disconnected generalized topological spaces

For every set X, let us denote by Γ_X the collection of all monotone mappings, i.e., mappings $\gamma : \mathcal{P}(X) \to \mathcal{P}(X)$ such that $A \subseteq B$ implies $\gamma A \subseteq \gamma B$. A mapping $\gamma : \mathcal{P}(X) \to \mathcal{P}(X)$ is said to be enlarging if $A \subseteq \gamma A$ for each A in $\mathcal{P}(X)$. If $\gamma \in \Gamma_X$, the collection of the sets A satisfying $A \subseteq \gamma A$ constitutes a GT on X denoted by λ_{γ} in [1]. We denote this GT just by γ itself. Any set $A \in \gamma$ is called γ -open and its complement is called γ -closed. For γ and γ' in Γ_X , we denote the composition $\gamma \circ \gamma'$, which is in Γ_X , by $\gamma \gamma'$. Thus, $\gamma \gamma' = \{A \subseteq X : A \subseteq \gamma \gamma' A\}$ is a GT on X.

For the purpose of the next three results, we denote, for a GTS (X, μ) , the interior i_{μ} and the closure c_{μ} by i and k, respectively. Of course, both i and k are elements of Γ_X and $ki\gamma \in \Gamma_X$ is enlarging whenever $\gamma : \mathcal{P}(X) \to \mathcal{P}(X)$ is enlarging.

Lemma 5.1. If (X, μ) is a GTS and $\gamma \in \Gamma$ is enlarging, then $\mu \subseteq \nu = ki\gamma$.

Proof. See 2.1 of [3].

Theorem 5.2. For an arbitrary $GTS(X, \mu)$, if $\gamma \in \Gamma$ is enlarging, then (X, ν) is extremally ν -disconnected GTS for $\nu = ki\gamma$.

Proof. If A is ν -open, then $A \subseteq ki\gamma A$ and the set $ki\gamma A$ is ν -closed by 5.1. Hence, $c_{\nu}A \cap M_{\mu} \subseteq ki\gamma A \subseteq ki\gamma (c_{\nu}A \cap M_{\nu})$ since $A \subseteq c_{\nu}A \cap M_{\nu}$.

Theorem 5.3. For a GTS (X, μ)

(i) (X, s_{μ}) is extremally s_{μ} -disconnected.

(ii) (X, β_{μ}) is extremally β_{μ} -disconnected.

Proof. Apply 5.2 to $\gamma = id$, the identity mapping and $\gamma = k$, respectively. \Box

A GTS (X, μ) is said to be μ -discrete if $x \in M_{\mu}$ implies that $\{x\}$ is μ -open.

Theorem 5.4. If (X, μ) is μ -discrete, then (X, μ) is extremally μ -disconnected.

Acknowledgement. The authors are very grateful to the referee for his observations which have improved the value of this paper.

References

- [1] Á. Császár, Generalized open sets, Acta Math. Hungar. 125 (2000), 309–335.
- [2] Å. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351–357.
- [3] Á. Császár, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest 47 (2004), 91–96.
- [4] Á. Császár, Product of generalized topologies, Acta Math. Hungar. 123 (2009), 127–132.
- [5] R. D. Sarma, On extremally disconnected generalized topologies, Acta Math. Hungar. 134 (2012), 583–588.
- [6] M.H. Stone, Algebraic characterization of special boolean rings, Fund. Math. 19 (1937), 123–302.
- [7] B. K. Tyagi, H. V. S. Chauhan and R. Choudhary, On γ-connected sets, International Journal of Computer Applications 113 (2015), 1–3.
- [8] B.K. Tyagi and H.V.S. Chauhan, A remark on semi-open sets in generalized topological spaces, communicated.

Brij Kishore Tyagi, Department of Mathematics, Atmaram Sanatan Dharma College, University of Delhi, New Delhi-110021, India *e-mail*: brijkishore.tyagi@gmail.com

Harsh V. S. Chauhan, Department of Mathematics, University of Delhi, New Delhi-110007, India *e-mail*: harsh.chauhan111@gmail.com