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A REMARK ON EXTREMALLY µ-DISCONNECTED

GENERALIZED TOPOLOGICAL SPACES

BRIJ KISHORE TYAGI and HARSH V. S. CHAUHAN

Abstract. A more general definition of extremally µ-disconnected generalized topo-

logical space [3] is introduced and its properties are studied. We have further im-
proved the definitions of generalized open sets [1] and upper(lower) semi-continuous

functions defined for a generalized topological space in [5]. In this generalized

framework we obtain the analogues of results in [1, 3, 5]. Examples of extremally
µ-disconnected generalized topological spaces are given.

1. Introduction

Extremally disconnected topological spaces defined by Stone [6] turned out to be
non-trivial generalization of the class of discrete spaces. A topological space is said
to be extremally disconnected if the closure of every open set is open. The same
definition is adapted by Császár [3] in generalized topological spaces as follows:
Let X be a set and P(X) be the power set of X. A subset µ of P(X) is called gen-
eralized topology (GT) on X if µ is closed under arbitrary unions and, in that case,
(X,µ) is called a generalized topological space (GTS). The elements of µ are called
µ-open sets and their complements are called µ-closed sets. The closure of a set A,
denoted by cµA, is the intersection of µ-closed sets containing A. A GTS (X,µ)
is called extremally µ-disconnected if cµU ∈ µ for each µ-open set U . Our main
argument on which this entire paper is based is that cµU , for any U ∈ µ, is never
in µ unless X ∈ µ. Therefore, if (X,µ) is not strong, that is, X /∈ µ, then (X,µ)
is not extremally µ-disconnected since cµ∅ = X −Mµ where Mµ = ∪{U : U ∈ µ}
is not µ-open. Hence, the notion of extremally µ-disconnectedness does not act
as a classification device in the class of non strong generalized topological spaces.
This does not seem to be a very satisfactory situation. To rectify the situation,
we have modified the above definition as follows: A GTS (X,µ) is said to be ex-
tremally µ-disconnected if cµU ∩Mµ ∈ µ for each µ-open set U . This definition
of course reduces to the standard one if µ is a topology on X. The present paper
discusses analogues of various properties of extremally µ-disconnected generalized
topological spaces.

There is another direction in which this paper achieves further generalizations.
In a GTS (X,µ), a subset A of X is called µ-semi-open if A ⊆ cµiµA, µ-preopen if
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A ⊆ iµcµA, µ-α-open if A ⊆ iµcµiµA, and µ-λ-open if A ⊆ cµiµcµA [1] : here, iµA,
the interior of A, is the union of all µ-open sets contained in A. In a topological
space, the union of open sets, semi-open sets, preopen sets, α-open sets, and λ-
open sets is the same set, which is equal to X. If a GTS (X,µ) is not strong,
the union of µ-open sets is Mµ 6= X whereas, since X is µ-semi-open, the union
of µ-semi-open sets is X. The situation for the class of µ-λ-open sets will be
similar. Consequently, we modify the definition of a µ-semi-open set A as follows:
A ⊆ cµiµA ∩Mµ [8] and that of a µ-λ-open set as follows : A ⊆ cµiµcµA ∩Mµ.
Note that, if a GT space is strong, the newly defined notions coincide with the
corresponding notion defined above. In this more general framework, we have
obtained every result in Sharma [5] and related results in Császár [1, 3].

There is a third direction in which further generalization is achieved. Sharma
[5] has defined generalized upper semi-continuous(lower semi-continuous) function
from a GTS (X,µ) to the real line R and gave an example showing that these two
notions together cannot be equivalent to the notion of generalized continuity [2].
We have replaced the real line R with a generalized topological space (R, τ [a, b]),
where R denotes the set of real numbers, a, b ∈ R and τ [a, b] is the GT generated
by the generalized basis B that consist of left open rays [a, c) and right open rays
(c, b], a < c < b. This GT is appropriate to obtain the above equivalence. This also
ensures that, in an extremally µ-disconnected GTS (X,µ), there is a rich supply
of µ-upper(lower) semi-continuous functions.

The paper is organized as follows. Section 2 contains basic notions and notation
used in the paper. In Section 3, we obtain equivalences shown in [5]. Section 4
deals with the µ-upper(µ-lower) semi-continuous functions. Section 5 provides
examples of extremally µ-disconnected generalized topological spaces.

2. Preliminaries

Let X be a set. A subset B of P(X) is called a generalized basis for X [4]. The
collection µ of all unions of elements of B is a GT on X called the generalized
topology generated by B. (X,µ) shall be used generically to denote a generalized
topological space.

Lemma 2.1. Let (X,µ) be a GT-space and A,B ⊆ X. Then, the following
statements hold.

(i) x ∈ cµA if and only if x ∈ U ∈ µ implies U ∩A 6= ∅.
(ii) If U, V ∈ µ and U ∩ V = ∅, then cµU ∩ V = ∅ and U ∩ cµV = ∅.
(iii) cµA = X − iµ(X −A) for any A ⊆ X.
(iv) cµA = cµ(A ∩Mµ).
(v) For any set A ⊆ X, iµcµiµcµA = iµcµA and cµiµcµiµA = cµiµA.

Recall that a set A is said to be µ-semi-open if A ⊆ cµiµA ∩Mµ, µ-preopen if
A ⊆ iµcµA, µ-α-open if A ⊆ iµcµiµA and µ-β-open if A ⊆ cµiµcµA ∩Mµ. The
collection of all µ-semi-open (µ-preopen, µ-α-open, µ-β-open) sets are denoted by
sµ,(πµ,αµ,βµ). These sets are GT’s on X and the following inclusions hold.

Theorem 2.2. (i) µ ⊆ αµ ⊆ sµ ⊆ βµ.
(ii) αµ ⊆ πµ ⊆ βµ.
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The sets U and V in a GT space (X,µ) are said to be µ-separated if cµU∩V = ∅
and U ∩ cµV = ∅.

A subset S in a GT-space (X,µ) is said to be µ-connected [7] if S∩Mµ = U ∪V
where U and V are µ-separated sets implies U = ∅ or V = ∅. (X,µ) is said to be
µ-connected if it is a µ-connected subset of itself.

The following lemmas are immediate.

Lemma 2.3. If µ and µ′ are GTs on a set X, then µ ⊆ µ′ implies cµ′A ⊆ cµA
for all A ⊆ X.

Lemma 2.4. Let µ and µ′ be GTs on a set X and µ ⊆ µ′. If U and V are
µ-separated, then U and V are µ′-separated.

Theorem 2.5. Let µ and µ′ be GTs on a set X with µ ⊆ µ′. Then, a µ′-
connected set is µ-connected.

Theorem 2.6 ([7]). The following statements are equivalent.

(i) (X,µ) is µ-connected.
(ii) If Mµ = G ∪G′, G,G′ ∈ µ, G ∩G′ = ∅, then G = ∅ or G′ = ∅.

A GT-space (X,µ) is called µ-irreducible [5] if, for each non-empty pair of µ-
open sets U and V , U ∩ V 6= ∅.
In view of 2.5, the following implications are immediate.

βµ-connectedness ⇒ πµ-connectedness
⇓ ⇓

sµ-connectedness ⇒ µ-connectedness
m

αµ-connectedness

Theorem 2.7. πβµ
= ββµ

= βµ.

Proof. Since A ⊆ cµA, cβµ
A ⊆ cβµ

cµA ⊆ cµcµA = cµA by Lemma 2.3. If
B ∈ βµ and B ⊆ cβµ

A, then B ⊆ cµiµcµB ∩Mµ and B ⊆ cµA. So that B ⊆
cµiµcµcµA∩Mµ = cµiµcµA∩Mµ. Hence, iβµ

cβµ
A ⊆ cµiµcµA ∩Mµ. On the other

hand X − cµiµcµA ⊆ X − iµcµiµcµA = cµ(X − cµiµcµA) = cµiµ(X − iµcµA) =
cµiµ(X − iµcµiµcµA) = cµiµcµ(X − cµiµcµA). Since X − cµiµcµA ⊆ Mµ, X −
cµiµcµA ∈ βµ. This together with iβµ

cβµ
A⊆ cµiµcµA ∩Mµ gives the inclusion

cβµ
iβµ

cβµ
A⊆ cβµ

(cµiµcµA ∩Mµ) ⊆ cβµ
(cµiµcµA) = cµiµcµA, that is, ββµ

⊆ βµ.
Also βµ ⊆ πβµ

⊆ ββµ
⊆ βµ by 2.2. �

Corollary 2.8. αβµ
= sβµ

= βµ.

Proof. βµ ⊆ αβµ
⊆ sβµ

⊆ ββµ
= βµ by 2.2 and 2.7. �

3. Extremally µ- disconnected generalized topological spaces

Definition 3.1. A GTS (X,µ) is called extremally µ-disconnected if cµU ∩
Mµ ∈ µ for every U ∈ µ.

Theorem 3.2. A GTS (X,µ) is extremally µ-disconnected if and only if, for
any disjoint µ-open sets U and V , cµU ∩ cµV ∩Mµ = ∅.
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Proof. Let (X,µ) be extremally µ-disconnected and U and V be disjoint µ-
open sets. Thus, cµU ∩ V = ∅ and U ∩ cµV = ∅. Then, cµU ∩Mµ ∩ V = ∅ and
U ∩ cµV ∩Mµ = ∅. Since cµU ∩Mµ ∈ µ, it follows that cµU ∩ cµV ∩Mµ = ∅.
Conversely, assume that cµU ∩ cµV ∩Mµ = ∅. Let W ∈ µ. If cµW = X −Mµ

then cµW ∩ Mµ = ∅ ∈ µ. Now W and X − cµW are disjoint so that cµW ∩
cµ(X − cµW )∩Mµ = ∅. Hence, cµW ∩Mµ ⊆ X − cµ(X − cµW ) = iµcµW . Since
iµcµW ⊆ cµW ∩Mµ, cµW ∩Mµ ∈ µ. �

Theorem 3.3. A GTS (X,µ) is extremally µ-disconnected if and only if, for
each U ∈ µ and µ-closed set F such that U ⊆ F , there exist a V1 ∈ µ and a
µ-closed set F1 such that U ⊆ F1 ∩Mµ ⊆ V1 ⊆ F .

Proof. Let (X,µ) be extremally µ-disconnected. Let U ∈ µ and F be a µ-closed
set with U ⊆ F . Then, U ∩ (X − F ) = ∅ and, by 3.2 cµU ∩ cµ(X − F ) ∩Mµ =
∅, that is, cµU ∩ Mµ ⊆ X − cµ(X − F ). Since iµF = X − cµ(X − F ) ⊆ F ,
U ⊆ cµU ∩Mµ ⊆ iµF ⊆ F . Conversely, let U and V be disjoint µ-open sets.
Then, U ⊆ X − V . Then, by our assumption, there exist a V1 ∈ µ and a µ-
closed set F such that U ⊆ F1 ∩Mµ ⊆ V1 ⊆ (X − V ). Then, it follows that
cµU ∩ cµV ∩Mµ = ∅. �

Theorem 3.4. If (X,µ) is an extremally µ-disconnected GTS, then the follow-
ing statements are equivalent:

(i) (X,πµ) is πµ-connected.
(ii) (X,βµ) is βµ-connected.

(iii) (X, sβµ) is sβµ-connected.
(iv) (X,βµ) is βµ-irreducible.

Proof. (i)⇒(ii) Suppose that (X,βµ) is not βµ-connected. Then, by 2.6, there
are disjoint non-empty βµ-open sets U and V such that Mβµ

= U ∪V . Then, U ⊆
cµiµcµU ∩Mµ and V ⊆ cµiµcµV ∩Mµ. Since (X,µ) is extremally µ-disconnected,
iµ(cµiµcµU∩Mµ) = cµiµcµU∩Mµ and iµ(cµiµcµV ∩Mµ) = cµiµcµV ∩Mµ. There-
fore, U ⊆ iµcµiµcµU = iµcµU . Similarly, V ⊆ iµcµU . So U and V are πµ- open,
which means that (X,πµ) is not πµ-connected.
(ii)⇔(iii) holds because sβµ

= βµ by 2.8.
(ii)⇒(iv) Suppose that (X,βµ) is not βµ-irreducible. Then, there are non-empty
disjoint βµ-open sets U and V . Let P = cµU ∩Mµ and Q = X − cµU . Since U ⊆
cµiµcµU∩Mµ, cµU ⊆ cµ(cµiµcµU∩Mµ) = cµcµiµcµU = cµiµcµU = cµiµcµ(cµU) =
cµiµcµ(cµU ∩Mµ) by 2.1. Therefore, cµU ∩Mµ ⊆ cµiµcµ(cµU ∩Mµ) ∩Mµ. Con-
sequently, P ∈ βµ. Since µ ⊆ βµ, Q ∈ βµ. Since Mµ = Mβµ

,Mβµ
= P ∪ Q. So,

(X,βµ) is not βµ-connected.
(iv)⇒(i) holds because πµ ⊆ βµ by 2.2. �

Theorem 3.5. In an extremally µ-disconnected GTS (X,µ), the following
statements hold:

(i) βµ = πµ.
(ii) sµ = αµ.

(iii) sµ ⊆ πµ.
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Proof. (i) πµ ⊆ βµ by 2.2. Let A ∈ βµ. Then, A ⊆ cµiµcµA ∩Mµ. Since X
is extremally µ-disconnected, cµiµcµA ∩Mµ ∈ µ. Therefore, iµ(cµiµcµA ∩Mµ) =
cµiµcµA ∩Mµ. Thus, A ⊆ iµcµiµcµA = iµcµA.
(ii) αµ ⊆ sµ by 2.2. So, we will prove that sµ ⊆ αµ. A ∈ sµ implies A ⊆
cµiµA ∩Mµ ∈ µ. Therefore, A ⊆ iµ(cµiµA ∩Mµ) ⊆ iµcµiµA.
(iii) holds by (i) and 2.2. �

Corollary 3.6. For an extremally µ-disconnected GTS (X,µ), the following
three conditions are equivalent:

(i) (X,πµ) is irreducible,
(ii) (X,βµ) is βµ-irreducible,
(iii) (X,βµ) is βµ-connected.

A point x ∈ X of a GTS (X,µ) is a point of extremal µ-disconnectedness of
X if there are no disjoint µ-open sets U and V such that x ∈ cµU ∩ cµV ∩Mµ.
Observe that every point in X −Mµ is a point of extremal µ-disconnectedness.

Theorem 3.7. A GTS (X,µ) is extremally µ-disconnected space if and only if
every point of X is a point of extremal µ-disconnectedness.

Theorem 3.8. An extremally µ-disconnected GTS (X,µ) is µ-connected if and
only if M,N ∈ µ,M 6= ∅, N 6= ∅ imply M ∩N 6= ∅.

Proof. The condition is clearly sufficient in view of 2.6 and the property of ex-
tremal µ-disconnectedness is not required here. Conversely, we assume that U, V ∈
µ, U 6= ∅, V 6= ∅ imply U ∩ V = ∅. Then, ∅ 6= U ⊆ cµU ∩Mµ ⊆ (X − V ) ∩Mµ 6=
Mµ and cµU ∩ Mµ ∈ µ because (X,µ) is extremally µ-disconnected GTS. So
that Mµ = (cµU ∩ Mµ) ∪ (X − cµU) which contradicts the µ-connectedness of
(X,µ). �

4. (µ, τ)-upper (lower) semi-continuous functions

Definition 4.1. Let (X,µ) be a GTS and R be the set of real numbers with
GT τ [a, b], a, b ∈ R, generated by the generalized basis B consisting of left open
rays [a, c) and right open rays (c, b], a < c < b. A function f : (X,µ) →
(R, τ [a, b]) is called (µ, τ)-upper semi-continuous ((µ, τ)-lower semi-continuous)
if f−1([a, c))(f−1((c, b]) is µ-open for every c with a < c < b.

Let (X,µ) and (Y, τ) be GTSs. A mapping f : X → Y is said to be (µ, τ)-
continuous ([2]) if f−1(U) is µ-open for each τ -open set U ⊆ Y .

Theorem 4.2. A function f : (X,µ) → (R, τ [a, b]) is (µ, τ)-continuous if and
only if f is both (µ, τ)-upper semi-continuous and (µ, τ)-lower semi-continuous.

Proof. Let G be τ -open. Then, G is a union of µ-open sets in B. Since f is
both (µ, τ)-upper semi-continuous and (µ, τ)-lower semi-continuous, the inverses
of these µ-open sets in B are µ-open. Hence, f−1(G) is µ-open and so f is (µ, τ)-
continuous. The converse is obvious. �

Theorem 4.3. A function f : (X,µ) → (R, τ [a, b]) is (µ, τ)-upper semi-
continuous if and only if cf : (X,µ) → (R, τ [ca, cb]) (cf : (X,µ) → (R, τ [cb, ca]))
is (µ, τ)-upper (lower) semi-continuous for every c > 0 (c < 0).
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Theorem 4.4. A function f : (X,µ) → (R, τ [a, b]) is (µ, τ)- lower semi-
continuous if and only if cf : (X,µ) → (R, τ [ca, cb]) (cf : (X,µ) → (R, τ [cb, ca]))
is (µ, τ)-lower (upper) semi-continuous for every c > 0 (c < 0).

Theorem 4.5. A function f : (X,µ) → (R, τ)[a, b] is (µ, τ)- upper (lower)
semi-continuous if and only if f + t : (X,µ) → (R, τ [a+ t, b+ t]) is (µ, τ)-upper
(lower) semi-continuous for every t ∈ R.

In the following theorem, the condition of strong GTS is not required, thereby,
improving Theorem 2.5 [5].

Theorem 4.6. Let (X,µ) be GTS. Then, a subset A ⊆ X is µ-open (µ-closed)
if and only if its characteristic function χA : (X,µ) → (R, τ [0, 1]) is (µ, τ)-lower
semi-continuous ((µ, τ)-upper semi-continuous).

Theorem 4.7. Let (X,µ) be an extremally µ-disconnected GTS. Let U and
V be two disjoint µ-open sets. Then, there exists a (µ, τ)-upper semi-continuous
function f : (X,µ)→ (R, τ [0, 1]) such that f(U) = {0} and f(V ) = {1}.

Proof. Since U ⊆ X − V , by 3.3, there exist a G1/2 ∈ µ and a µ-closed set F1/2

such that U ⊆ F1/2 ∩Mµ ⊆ G1/2 ⊆ X − V
Again, since U ⊆ F1/2 and G1/2 ⊆ X − V , there exist µ-open sets G1/4, G3/4 and
µ-closed sets F1/4, F3/4 such that

U ⊆ F1/4 ∩Mµ ⊆ G1/4 ⊆ F1/2 and G1/2 ⊆ F3/4 ∩Mµ ⊆ G3/4 ⊆ X − V
Thus,

U ⊆ F1/4 ∩Mµ ⊆ G1/4 ⊆ F1/2 ∩Mµ ⊆ G1/2 ⊆ F3/4 ∩Mµ ⊆ G3/4 ⊆ X − V
By induction, for each dyadic rational number of the form t =

m

2n
, n = 1, 2, . . .

and m = 1, 2, ...2n − 1, we may show that, for t1<t2, there are µ-open sets Gt1
and Gt2 and µ-closed sets Ft1 and Ft2 such that

U ⊆ Ft1 ∩Mµ ⊆ Gt1 ⊆ Ft2 ∩Mµ ⊆ Gt2 ⊆ X − V
Now we define a functionf : (X,µ)→ (R, τ [0, 1]) as follows:

f(x) =


0, if x ∈ Gt for all t,

sup {t : x /∈ Gt}, if x ∈Mµ − ∩tGt,
α ∈ R− [0, 1], if x ∈ X −Mµ.

Then, f(U) = 0 andf(V ) = 1. We will show that f is (µ, τ)-upper semi-continuous,
that is, f−1([0, a)), 0<a<1, is µ- open. Now x ∈ f−1([0, a)) implies f(x)<a. So,
there must be a dyadic rational t<a such that x ∈ Gt. Thus, f−1([0, a)) ⊆ ∪t<aGt.
On the other hand, if x ∈ ∪t<aGt, then x ∈ Gt0 for some t0<a, f(x) ≤ t0<a. So,
x ∈ f−1([0, a)). Therefore, f is (µ, τ)-upper semi-continuous. �

Corollary 4.8. Let (X,µ) be an extremally µ-disconnected GTS. Let U and
V be two disjoint µ-open sets. Then, there exists a (µ, τ)-lower semi-continuous
function f : (X,µ)→ (R, τ [0, 1]) such that f(U) = {0} and f(V ) = {1}.

Proof. By Theorem 4.7, there exists a (µ, τ)-upper semi-continuous function f
such that f(U) = {1} and f(V ) = {0}. Thus −f+1 is (µ, τ)-lower semi-continuous
and (−f + 1)(U) = {0} and (−f + 1)(V ) = {1}. �
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5. Examples of Extremally µ-disconnected generalized topological
spaces

For every set X, let us denote by ΓX the collection of all monotone mappings,
i.e., mappings γ : P(X)→ P(X) such that A ⊆ B implies γA ⊆ γB. A mapping
γ : P(X)→ P(X) is said to be enlarging if A ⊆ γA for each A in P(X). If γ ∈ ΓX ,
the collection of the sets A satisfying A ⊆ γA constitutes a GT on X denoted by
λγ in [1]. We denote this GT just by γ itself. Any set A ∈ γ is called γ-open and
its complement is called γ-closed. For γ and γ′ in ΓX , we denote the composition
γ◦γ′, which is in ΓX , by γγ′. Thus, γγ′ = {A ⊆ X : A ⊆ γγ′A} is a GT on X.

For the purpose of the next three results, we denote, for a GTS (X,µ), the
interior iµ and the closure cµ by i and k, respectively. Of course, both i and k
are elements of ΓX and kiγ ∈ ΓX is enlarging whenever γ : P(X) → P(X) is
enlarging.

Lemma 5.1. If (X,µ) is a GTS and γ ∈ Γ is enlarging, then µ ⊆ ν = kiγ.

Proof. See 2.1 of [3]. �

Theorem 5.2. For an arbitrary GTS (X,µ), if γ ∈ Γ is enlarging, then (X, ν)
is extremally ν-disconnected GTS for ν = kiγ.

Proof. If A is ν-open, then A ⊆ kiγA and the set kiγA is ν-closed by 5.1.
Hence, cνA ∩Mµ ⊆ kiγA ⊆ kiγ(cνA ∩Mν) since A ⊆ cνA ∩Mν . �

Theorem 5.3. For a GTS (X,µ)

(i) (X, sµ) is extremally sµ-disconnected.
(ii) (X,βµ) is extremally βµ-disconnected.

Proof. Apply 5.2 to γ = id, the identity mapping and γ = k, respectively. �

A GTS (X,µ) is said to be µ-discrete if x ∈Mµ implies that {x} is µ-open.

Theorem 5.4. If (X,µ) is µ-discrete, then (X,µ) is extremally µ-disconnected.
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