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EFFICIENCY COMPARISON OF HOPFIELD NETWORK WITH

SIMULATED ANNEALING AS OPTIMIZATION METHODS FOR

SOLVING THE TRAVELING SALESMAN PROBLEM

MILOŠ KŘIVAN and BÁRA BUDÍNSKÁ

Abstract. This paper formulates an open traveling salesman optimization problem

and presents a general description of the solution of this problem using Hopfield

network and simulated annealing heuristic optimization technique. The experiment
described is performed on a set of 45 European cities. The experiment was processed

by a specialized computer program.

1. Introduction

With the development of computing technology and the growth of its computa-
tional power, there has been an increasing focus on artificial intelligence methods.
These methods include terms such as artificial neural networks or evolutionary
algorithms. However, their massive utilization in practical applications across all
human activities only occurred in the eighties of the previous century, due to the
development of personal computers.

Artificial neural networks are used to process and evaluate incomplete, indeter-
minate or inconsistent information, especially for tasks involving recognition, di-
agnostics, classification of objects with respect to provided categories or prediction
of the time development of a given variable, cluster analysis of multidimensional
data, noise filtering and, last but not least, for the solution of special optimization
problems, as described in this article.

Evolutionary algorithms are used to find a solution with sufficient quality for
large-scale general optimization tasks in a sufficiently short time. Evolutionary
algorithms inspired by nature include a whole spectrum of optimization heuristic
techniques such as particle swarm or ant colony optimization, genetic algorithms or
simulated annealing. Heuristics may be described as a procedure for searching the
solution space via shortcuts, which are not guaranteed to find the correct solution
but do not suffer from a range of problems of conventional optimization methods
such as the requirement of connectivity or differentiability of the criterion or link
function, the problem of respecting constraints, being stuck in a shallow local
minimum or divergence. However, their application requires the configuration of
certain free parameters, which need to be setup based on the specific optimization
task – these may, e.g., include the starting or final temperature and the number of
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iterations of the simulated annealing algorithm described below and based on the
evolution of thermodynamic systems. In physics, annealing is a process where an
object, heated up to a certain high temperature, is being gradually cooled down to
remove internal defects in the object. The high temperature causes the particles
in the object to rearrange randomly, which destroys defects in the crystal lattice,
and the gradual cooling then allows the particles to stabilize at equilibrium points
with a lower probability of new defects being created.

2. Traveling salesman problem

We define a strongly connected directed graph with evaluated edges as an ordered
quadruple [V,E, ε, w]:

V set of vertices,
E set of edges,
ε mapping edges with incidence vertices (ε : E → V × V ),
w evaluation of edges (w : ε(E)→ R),

and put w([i, j]) ≡ wij and |V | = m, n = m2, then for open traveling salesman
problem [4–11] is following optimization problem:

f : Rn → R, f (~x0) = min
~x∈Ω

f (~x) , Ω ⊂ {0, 1}n, f (~x) =
∑
i

∑
j

wijxij (2.1)

where xij is the off/on status of the edge directed from i -th to j -th vertex (xii = 0)
for i, j ∈ V .

Each vector ~x ∈ Ω selects such a subgraph of the original graph (containing all
vertices of original graph) for which it is true that, for every vertex, its indegree
and outdegree are equal to one (except the indegree of the unique source vertex
and the outdegree of the unique sink vertex).

3. Hopfield network

We define a Hopfield artificial neural network as a directed graph with edges and
vertices evaluated dynamically, i.e., as an ordered quintuple [V,E, ε, w, y]:

V set of vertices (neurons),
E set of edges (synapses),
ε mapping edges into incidence vertices (ε : E → V × V ),
w evaluation of edges (w : ε(E)→ R),
y dynamic evaluation of vertices (y : V × t→ R)

where ∀t ∈ t let us put y([i, t]) ≡ yi(t) and let us put w([i, j]) ≡ wij .
The vector ~w = [wij : i, j ∈ V ] where wii = 0 is called the network configuration

and the vector ~y (t) = [yi(t) : i ∈ V ] is called the network state at time t. The state
of the network as a vector function of time t is referred to as active dynamics of
the neural network. Active dynamics of a neural network in continuous time can
be defined as a solutions vector of the following system of differential equations
[1]:

d

dt
xj(t) + xj (t) =

∑
i

fi(xi(t−4t))wij − ϑj (3.1)

i, j ∈ V and then, analogously to biological neural network, we have:
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xi potential of the i -th neuron,
fi activation function of the i -th neuron (fi(xi) = yi),
ϑj threshold of the j -th neuron,
wij synaptic weight links of the i -th neuron to the j -th neuron
∆t signal delay time.

If we replace in (3.1) the derivatives by analogous expressions for discrete time:

d

dt
xj(t) ≡

xj (t+ 1)− xj (t)

t+ 1− t
and, if we set ∆t = 0, then we obtain the following system of difference equations
and the vector of its solutions defines the active dynamics of a neural network in
discrete time:

yj(t+ 1) = fj

(∑
i

yi (t) wij − ϑj
)
, yi(0) = 0,

i, j ∈ V .
Let us approximate the dependence of the state on the potential of the neuron

by sigmoid function f(x) = 1/(1 + e−px) where the parameter p > 0 expresses the
slope of the sigmoid. For a slope approaching zero or infinity we get the activation
function in the shape of linearity non-linearity, respectively:

lim
p→0

f(x) =
1

2
, lim

p→∞
f(x) = 0 for x < 0, lim

p→∞
f(x) = 1 for x > 0.

We define the energy function of network state [2]

E(~y) = −
(1

2

∑
j

∑
i

yiwijyj −
∑
j

yjϑj

)
and we identify its partial derivatives

−∂E(~y)

∂yj
=
∑
i

yiwij − ϑj , −∂E(~0)

∂yj
= −ϑj , −∂

2E(~y)

∂yi∂yj
= wij ,

where i, j ∈ V .
We define a stable state of the network as a state for which we have ~y (t) =

~y (t+ 1) and the parameter T as the inverse value of the sigmoid slope:

Theorem 3.1. Let us assume T → 0. Then, for all unstable state for yi(t) =
yi(t+ 1) where i ∈ V − {j} (asynchronous active dynamics) for xj(t+ 1) 6= 0 and
wij = wji for i, j ∈ V , it is true that an energy function value of the network state
at time t is greater than the energy function value of the network state at time
t+ 1, i.e., E(~y(t)) > E(~y(t+ 1)).

Proof. (∑
i

yi(t)wij − ϑj
)
yj(t) <

(∑
i

yi(t+ 1)wij − ϑj
)
yj(t+ 1),

because

xj (t+ 1) > 0 ⇒ yj (t+ 1) = 1 ⇒ yj (t) = 0,

xj (t+ 1) < 0 ⇒ yj (t+ 1) = 0 ⇒ yj (t) = 1,

where i, j ∈ V . �
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From the above theorem and from the fact that the energy function is bounded
from below, it follows that the network state during the active dynamics by quasi-
gradient descent on the energy function converges to a stable state with a locally
minimum value of the energy function.

For higher values of the parameter T the convergence to a local minimum of the
energy function at the bottom of the smaller gradient slope can be distorted, which
can be used for skipping a local minimum. If the value of the parameter T from
a sufficiently high initial value will gradually decrease (during active dynamics),
then (after skipping a shallow local minima) the network state gets stuck (at
a sufficiently low value of the parameter T ) in a deep minimum of the energy
function at the bottom of the steeper gradient slope and converges to a stable
state with approximately the globally minimal value of the energy function, i.e.,
a network state freezes in the global minimum. The parameter T is analogous to
the temperature from the simulated annealing optimization method.

Let the number of neurons of Hopfield network equal to m2 (m ∈ N), then
we can interpret the neurons mentioned as the elements of a square matrix of
dimension m×m, and define the following network state function:

G1(~y) =
1

2

∑
i

(∑
j

yij − 1
)2

, G2(~y) =
1

2

∑
j

(∑
i

yij − 1
)2

,

G3(~y) =
∑
i

∑
j

ρij
∑
k

yikyjk+1,

where i, j ∈ {1, . . . ,m}, k ∈ {1, . . . ,m− 1} and ρij is the metric, and we identify
its partial derivatives

−∂G1(~0)

∂yij
= 1, −∂

2G1(~y)

∂yij∂yik
= −1,

−∂G2(~0)

∂yij
= 1, − ∂

2G2(~y)

∂yij∂ykj
= −1,

where i, j, k ∈ {1, . . . ,m} and

−∂G3(~0)

∂yij
= 0, − ∂2G3(~y)

∂yik∂yjk+1
= −ρij ,

where i, j ∈ {1, . . . ,m} and k ∈ {1, . . . ,m− 1}.
We define the objective function G as the sum of the functions G1, G2, G3

and identify a configuration of the network by extraction from function G using
the above partial derivatives, then the objective function G aligns with the energy
function E, which will be minimized during active dynamics.

Minimizing the function G1 or G2 (see Figure 1) we provide an excitation of just
one neuron in each row or column of the above mentioned matrix, i.e., we receive
permissible state of the network (if we interpret the row or columns of the matrix
as the cities or order of its visit), respectively, each permissible network state
represents some solution of the traveling salesman problem, but not necessarily
optimal.

By minimizing the function G3 (see Figure 1), we provide the optimal per-
missible state of the network, i.e., the optimal solution of the traveling salesman
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problem, because the value of the function G3 determines the length of the path
of a salesman depending on the permissible state.

Figure 1. Links providing minimization of functions G1, G2, G3.

4. Simulated annealing

Consider the case that the objective function argument (2.1) unambiguously spec-
ifies the macroscopic state of a certain thermodynamic system with energy equal
to the function value. Then, we can express its thermodynamic probability

P (Ei) =
∣∣∣{~x ∈ Rn : f(~x) = Ei}

∣∣∣
as the number of micro-states corresponding to it.

If we immerse this system in various macro-states with energies Ei in a thermal
reservoir, then the Boltzmann equation for the unit size of the Boltzmann constant
together with the Taylor expansion of a differentiable function, allows us to express
the entropy of the reservoir after the temperatures equilibration for E = E0 +Ei =
const and E � Ei as follows:

S (Ei) = S(E)− dS(E)

dEi
Ei = lnP (E − Ei)

and then, by using the definition of temperature dS(E)/dE = 1/T (T > 0), we can
express the thermodynamic probability of a macro-state of the thermal reservoir
as a function of the energy of the macro-state of the inserted system, i.e., by the
following Boltzmann factor:

P (E − Ei) = c e−
Ei
T .

The simulated annealing algorithm is based on a perturbation of an optimum
candidate and a following decision on its replacement by the perturbation in each
iteration of the algorithm based on the Metropolis criterion [3]

p(~xi → ~xj) =
P (Ej)

P (Ei)
= e−

∆E
T , ∆E > 0,

p(~xi → ~xj) = 1, ∆E ≤ 0,

which expresses the probability of the system transferring from one macro-state
to another, where ∆E = Ej − Ei and ∆E/T expresses the increase of entropy,
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i.e., in accordance with the second law of thermodynamics an impossible event is
artificially redefined as a certain event in the specified criterion.

The sequence of accepted perturbations, i.e., acceptable solutions to the opti-
mization task, forms a Markov chain with memory of order one, i.e., the occurrence
of the given solution is only conditioned by the occurrence of the previous solu-
tion. The perturbations which lie outside the area of admissible solutions are
automatically rejected.

p

1
T = const

∆f0

Figure 2. Dependence of probability on increase of energy.

p

1
∆f = const

T0

Figure 3. Dependence of probability on temperature.

From p(∆f) (see Figure 2) it is clear that a significantly “worse” solution is
accepted with respect to the previous solution at a much lower probability than
a slightly “worse” solution. p(T ) (see Figre 3) may be used to control the prob-
ability of the acceptance of the solution during the iteration cycle. We initiate
the iteration cycle with a sufficiently high temperature to ensure that almost ev-
ery proposed solution is accepted for a certain period of time, which will allow
an initial approximation of the solution to “escape” areas with shallow local min-
ima. Later on, we reduce the temperature so that almost no “worse” solution is
accepted, i.e., during the iteration cycle, we cool down the system representing
the optimization task from a sufficiently high temperature to a sufficiently low
temperature until a solution is “frozen” in a sufficiently deep local minimum (see
Figure 4). The temperature descent may be modeled, e.g., as an exponentially
decreasing function

T = T0e−
iter
τ , τ = − N

ln(T∞/T0)
, T∞ ≈ lim

iter→∞
T0e−

iter
τ = 0

where T0 or T∞ are the initial or final temperatures, respectively, and N is the
number of iterations of the algorithm.
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Figure 4. Freezing of solution.

5. Experiment

The following computational experiment was performed on a set of 45 European
cities (see Table 1) using both optimization methods mentioned for two ways of
temperature descent, i.e., exponential and linear. The experiment was always per-
formed for variant values of initial temperature (0.1÷1000) or values of parameter
SEED (0÷1000) and for a variant number of iterations (103÷106) or (103÷109),
see Table 2 (Hopfield network) and Table 3 (simulated annealing) including the
average optimal distance � and the absolute deviation σ. Table 3 implies Figure 5.
All simulated annealing experiments were performed for the initial temperature
equal to one, except for the last series (109 iterations) of experiments for linear
descent where the initial temperature was set to five.

A fragment of Fortran source code implementing asynchronous active dynamics
of Hopfield network follows:

      . 

      . 

      . 

C 

C ACTIVATION FUNCTION DEFINITION 

C 

 F(X) = 1.0/(1.0 + EXP(-X/Temperature)) 

C 

C A C T I V E    D Y N A M I C S    (ASYNCHRONOUS) 

C 

C     N - NUMBER OF CITIES 

C Y - STATE OF NEURON 

C     W - SYNAPTIC WEIGHT 

C 

 DO I=1,N*N 

 Y(I) = 1.0 

 DO J=1,N*N 

 Y(I) = Y(I) + Y(J)*W(J+(I-1)*N) 

 ENDDO 

 Y(I) = F(Y(I)) 

 ENDDO 

      . 

      . 

      . 
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A fragment of Fortran source code implementing variant ways of temperature
descent follows:

 FUNCTION TSP (T0,Tinf,LIM,SEED) 

C 

C     T0   - INITIAL TEMPERATURE 

C     Tinf - FINAL TEMPERATURE 

C     LIM  - LIMIT OF ITERATION 

C     SEED - BEGINNING OF PSEUDORANDOM SERIES 

C 

 ITERATION = -1 

 TAU = -LIM/LOG(Tinf/T0) 

100 ITERATION = ITERATION + 1 

      IF(DESCENT.EQ.0)THEN                 ! 0-EXPONENTIAL, 1-LINEAR 

 Temperature = T0*EXP(-ITERATION/TAU) 

      ELSE 

 Temperature = -((T0-Tinf)*ITERATION/LIM) + T0 

      ENDIF 

      . 

      . 

      . 

 IF(ITERATION.LT.LIM)GOTO 100 

      RETURN 

 

Amsterdam Dublin Kobenhavn Munchen Strasbourg
Ankara Dubrovnik Lisboa Narvik Venezia
Athenai Edinburgh Liverpool Oslo Warszawa
Barcelona Frankfurt London Palermo Wien
Beograd Geneve Luxenbourg Paris Zurich
Berlin Hamburg Madrid Praha
Bratislava Hammerfest Malaga Roma
Bruxelles Helsinki Marseille Salzburg
Bucuresti Instanbul Milano Sofia
Budapest Kijev Moskva Stockholm

Table 1. Used European cities.

Exp 0.1 1 5 10 50 100 500 1000 Ø σ
3 63599 44225 43778 42580 47373 43111 43770 46660 46887 4300
4 63599 35968 35403 36682 37668 40212 36563 41637 40967 5826
5 34278 38222 38557 34278 33610 37330 35180 39517 36372 2035
6 38912 35892 35559 33668 35559 38912 35892 35559 36244 1334

Lin 0.1 1 5 10 50 100 500 1000 Ø σ
3 63599 49691 56409 63494 ERR ERR ERR ERR 58298 5248
4 63599 35818 39703 49691 56409 63599 ERR ERR 51470 9733
5 78595 37522 40870 35818 39703 45432 57134 63317 49799 12412
6 78595 35559 35559 35815 36239 35818 40657 40764 42376 9055

Table 2. Optimal distance for variant initial temperature and number of iterations.
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Exp 0 1 5 10 50 100 500 1000 Ø σ
3 39544 39009 39315 40824 38577 42079 42890 36130 39796 1601
4 30663 33507 26551 29417 33686 30116 31876 31343 30895 1708
5 27146 26944 27969 30623 29658 27899 27421 28596 28282 1008
6 26534 25932 29001 27070 26157 28419 27805 26466 27173 927
7 26528 25460 26452 25361 24428 26454 29066 27468 26402 989
8 25934 24786 24557 26812 25545 26471 28403 25428 25992 928
9 33664 33617 31528 31320 26114 29320 27255 30521 30417 2141

Lin 0 1 5 10 50 100 500 1000 Ø σ
3 48024 54057 48038 49988 53922 53167 42890 51830 50240 3005
4 40581 38116 36496 37282 35368 40152 37476 36299 37721 1421
5 29916 29618 29475 31216 29126 29384 28417 30391 29693 611
6 27273 27171 25851 28421 26072 26830 27566 27584 27096 634
7 26904 25917 25618 25798 25442 26152 26941 26758 26191 507
8 25191 24922 25343 26162 24741 26373 24504 25713 25369 536
9 24360 24074 24881 25577 25071 24558 24924 25811 24907 439

Table 3. Optimal distance for variant initial seed and number of iterations.
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60000

0 2 4 6 8 10
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Linear

Figure 5. Average optimal distance dependent on number of iterations.

On average, the best results we obtain when the number of iterations is equal
to 106 for Hopfield network (see Table 2) and 108 or 109 for simulated annealing
(see Table 3) at exponential or linear descent, respectively.

The best optimal solution of Hopfield network (see Table 4 and Figure 6) or
simulated annealing (see Table 5 and Figure 7) is 33 610 km or 24 074 km, respec-
tively:
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Hopfield Network: 
 
Initial Temp   Final Temp   Iteration Limit    Distance0  Distance1  Saving 
      50.000     0.000001            100000       93698.     33610.  60088. 

Simulated Annealing: 
 
Initial Temp  Final Temp  Iteration Limit SEED Distance0  Distance1  Saving 
       5.000    0.000001       1000000000    1    77784.     24074.  53710. 
 

where Distance0 or Distance1 is a randomly generated initial solution or optimal
solution, respectively.

Lisboa Edinburgh Zurich Instanbul Oslo
Madrid Liverpool Salzburg Sofia Stockholm
Barcelona London Munchen Beograd Helsinki
Malaga Strasbourg Venezia Budapest Narvik
Marseille Warszawa Milano Wien Hammerfest
Geneve Bucuresti Roma Bratislava
Paris Kijev Dubrovnik Praha
Amsterdam Frankfurt Palermo Berlin
Bruxelles Luxenbourg Athenai Hamburg
Dublin Moskva Ankara Kobenhavn

Oslo
Stockholm
Helsinki
Narvik
Hammerfest

Table 4. Hopfield network solution.

Lisboa Athenai Salzburg London Helsinki
Malaga Ankara Munchen Dublin Stockholm
Madrid Instanbul Zurich Liverpool Oslo
Barcelona Bucuresti Geneve Edinburgh Narvik
Marseille Sofia Strasbourg Kobenhavn Hammerfest
Milano Beograd Frankfurt Hamburg
Venezia Budapest Luxenbourg Berlin
Roma Bratislava Paris Warszawa
Dubrovnik Wien Bruxelles Kijev
Palermo Praha Amsterdam Moskva

Table 5. Simulated annealing solution.

The calculation experiment was realized on the usual laptop CPU Intel 2GHz
and the calculation time took about five minutes for simulated annealing (109

iterations) and one hour for Hopfield network (106 iterations) depending on the
network state stabilization moment. The simulated annealing algorithm is thus
much faster than the Hopfield network quasi-gradient descent. The source vertex
is equal to Lisbon and the sink vertex is equal to Hammerfest in both cases. The
simulated annealing can be used for an asymmetric travelling salesman problem
but the Hopfield network can only be used only for a symmetric travelling salesman
problem.
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6. Conclusion

The exact optimal solution is 23 932 km (computed by IBM ILOG CPLEX Op-
timizer), whereas the best optimal solution computed by simulated annealing is
24 074 km, which is only by about 142 km (0.6%) worse.

The simulated annealing algorithm yields much better results than the Hopfield
network quasi-gradient descent, i.e., about 10 000 km shorter distance. The trajec-
tory of the Hopfield network quasi-gradient descent apparently never crossed the
area of a sufficiently deep local minimum during our experiment. The choice of the
weighting coefficient w for equalizing the numerical disbalance between functions
G1 +G2 and G3 (G = G1 +G2 +wG3) can be substituted by setting a threshold
value of the neurons. In the above experiment, threshold value of each neuron was
set identically to an initial value because the metric ρ was normalized (see part
Hopfield network).

Figure 6. Hopfield network solution.

The initial temperature of the simulated annealing is set so that, during the
first 10%, a sufficient number of iterations have been accepted by almost every
perturbation. The rate of temperature decrease is inversely proportional to the
selected number of iterations varied in the above experiment. The experiment
implies that the exponential descent (as compared with the linear descent) of
a temperature is preferable for smaller number of iteration.

The source and sink vertex were determined by the program used in the exper-
iment spontaneously and identically by both optimization methods used above.
The description of the computational experiment implies a high efficiency of the
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Figure 7. Simulated annealing solution.

optimization algorithm of simulated annealing when searching the admissible so-
lution space, given by the ratio of the total number of admissible solutions (45!)
to the number of simulated admissible solutions, i.e., about 1056 : 109. The simu-
lated annealing algorithm can be run in parallel (for example) in eight threads on
a quad-core computer for eight variously selected values of the initial temperature
and then the best obtained solution can be selected.
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