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LIFTING CONNECTIONS TO THE r-JET PROLONGATION

OF THE COTANGENT BUNDLE

W LODZIMIERZ M. MIKULSKI

Abstract. We show that the problem of finding allMfm-natural operators C : Q 
QJrT ∗ lifting classical linear connections ∇ on m-manifolds M into classical linear
connections CM (∇) on the r-jet prolongation JrT ∗M of the cotangent bundle T ∗M

of M can be reduced to that of finding all Mfm-natural operators D : Q  
p⊗

T⊗
q⊗

T ∗ sending classical linear connections ∇ on M into tensor fields DM (∇) of type

(p, q) on M .

1. Introduction

All manifolds are assumed to be smooth, Hausdorff, finite dimensional, and with-
out boundaries. Maps are assumed to be smooth (of class C∞). The category of
m-dimensional manifolds and their embeddings is denoted by Mfm.

In [5], M. Kureš described completely all Mfm-natural operators B : Qτ  
QT ∗ lifting torsion free classical linear connections ∇ on m-manifolds M into
classical linear connections BM (∇) on the cotangent bundle T ∗M of M .

In [4], the authors studied a similar problem of describing all Mfm-natural

operators B : Q  Q(
k⊗
T ∗) transforming classical linear connections ∇ on m-

manifolds M into classical linear connections BM (∇) on the k-th tensor power
k⊗
T ∗M of the cotangent bundle T ∗M of M . They proved that this problem

can be reduced to the well known one of describing all Mfm-natural operators

D : Q  
p⊗
T⊗

q⊗
T ∗ sending classical linear connections ∇ on m-manifolds M

into tensor fields DM (∇) of type (p, q) on M .
In [7], we investigated a similar problem of describing all Mfm-natural op-

erators B : Q  QT r∗ lifting classical linear connections ∇ on m-manifolds
M into classical linear connections BM (∇) on the r-th order cotangent bundle
T r∗M = Jr(M,R)0 of M . We proved that this problem can also be reduced to

the well known one of describing all D : Q 
p⊗
T⊗

q⊗
T ∗.

In the present note, we consider a similar problem of describing allMfm-natural
operators C : Q  QJrT ∗ lifting classical linear connections ∇ on m-manifolds
M into classical linear connections CM (∇) on the r-jet prolongation JrT ∗M of
the cotangent bundle T ∗M of M . Modifying paper [7], we show that this problem
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can be reduced to the well-known one of describing all

D : Q 
p⊗
T⊗

q⊗
T ∗, too.

We recall that the r-jet prolongation of the cotangent bundle is a functor JrT ∗ :
Mfm → VB sending any m-manifold M into JrT ∗M (the vector bundle of r-jets of
sections M → T ∗M of the cotangent bundle T ∗M →M of M) and any embedding
ϕ : M1 → M2 of two m-manifolds into JrT ∗ϕ : JrT ∗M1 → JrT ∗M2 given by
JrT ∗ϕ(jrxω) = jrϕ(x)(T

∗ϕ ◦ ω ◦ ϕ−1), jrxω ∈ JrT ∗M . If r = 0, J0T ∗M=̃T ∗M (the

usual cotangent bundle).
Further, we inform that a linear connection on a vector bundle E over a manifold

M is a bilinear map D : X (M)×ΓE → ΓE such that DfXσ = fDXσ and DXfσ =
Xfσ + fDXσ for any smooth map f : M → R, any vector field X ∈ X (M) on M
and any smooth section σ ∈ ΓE of E → M . In particular, a linear connection ∇
in the tangent space TM of M is called a classical linear connection on M .

We also inform that a general definition of natural operators can be found in
[3]. In particular, anMfm-natural operator C : Q QJrT ∗ is anMfm-invariant
system C = {CM}M∈obj(Mfm) of regular operators (functions)

CM : Q(M)→ Q(JrT ∗M)

for any m-manifold M where Q(M) is the set of all classical linear connections
on M . More precisely, the Mfm-invariance of C means that if ∇1 ∈ Q(M1) and
∇2 ∈ Q(M2) are ϕ-related by an embedding ϕ : M1 →M2 of m-manifolds (i.e. ϕ is
(∇1,∇2)-affine), then CM1(∇1) and CM2(∇2) are JrT ∗ϕ-related. The regularity
means that CM transforms smoothly parametrized families of connections into
smoothly parametrized ones.

Similarly, an Mfm-natural operator (natural tensor) D : Q  
p⊗
T⊗

q⊗
T ∗ is

an Mfm-invariant system D = {DM}M∈obj(Mfm) of regular operators

DM : Q(M)→ T p,q(M)

for any M ∈Mfm, where T p,q(M) is the set of tensor fields of type (p, q) on M .
By the general result in [6], since JrT ∗ :Mf → VB is a vector natural bundle,

there exists an Mfm-natural operator C : Q QJrT ∗. An explicit example of a
natural operator C : Q  QJrT ∗ (similar to Example 1 in [7]) will be presented
in item 2, too.

A full description of allMfm-natural operators Q 
p⊗
T⊗

q⊗
T ∗ transforming

torsion free classical connections on m-manifolds into tensor fields of types (p, q)
can be found in Lemma in Section 33.4 in [3]. For the reader’s convenience,
we present this description. Each covariant derivative of the curvature R(∇) ∈
C∞M (∧2T ∗M⊗T ∗M⊗TM) of a classical linear connection ∇ is an (Mfm-)natural
tensor. Further, every tensor multiplication of two natural tensors and every
contraction on one covariant and one contravariant entry of a natural tensor gives
a new natural tensor. Finally, we can multiply any natural tensor with a connection
independent natural tensor, we can permute any number of entries in the tensor
product and we can repeat these steps and take linear combinations. In this way,
we can obtain any natural tensor of types (p, q) depending on a torsion free classical
linear connection. All natural tensors of a (not necessarily torsion free) classical
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linear connection ∇ can be obtained provided we also include the torsion tensor
T (∇) and their covariant derivatives in the above procedure.

2. Preparations

We are going to present an example of an Mfm-natural operator C(r) : Q  
QJrT ∗. We start with the following important proposition (similar to Proposition
1 in [7]).

Proposition 2.1. Let ∇ be a classical linear connection on M . Then, there is
a (canonical in ∇) vector bundle isomorphism

I∇ : JrT ∗M →
r⊕

k=0

k⊙
T ∗M ⊗ T ∗M

covering the identity map of M .

Proof. We proceed as in the proof of Proposition 1 in [7]. Let v ∈ T r∗x M ,
x ∈ M . Let ϕ : (M,x) → (Rm, 0) be a ∇-normal coordinate system with center
x. We put

I∇(v) = Iϕ∇(v) :=

r⊕
k=0

k⊙
T ∗ϕ−1 ⊗ T ∗ϕ−1 ◦ I ◦ JrT ∗ϕ(v),

where I : JrT ∗0 Rm →
⊕r

k=1

k⊙
T ∗0 Rm ⊗ T ∗0 Rm =

⊕r
k=0

k⊙
Rm∗ ⊗ Rm∗ is the

obvious GL(m)-invariant vector space isomorphism. If ψ : (M,x) → (Rm, 0) is
another ∇-normal coordinate system with center x, then ψ = A ◦ ϕ (near x) for

some A ∈ GL(m). Using the GL(m)-invariance of I, we deduce that Iψ∇(v) =
Iϕ∇(v). So, the definition of I∇(v) is independent of the choice of ϕ. �

In [1], J. Gancarzewicz presented a canonical construction of a classical linear
connection on the total space of a vector bundle E over M from a linear connection
D in E by means of a classical linear connection ∇ on M . For the reader’s
convenience, we present the construction. If X is a vector field on M and σ is
a section of E, then DXσ is a section of E. Further, let XD denote the horizontal
lift of a vector field X with respect to D. Moreover, using the translations in the
individual fibres of E, we derive from every section σ : M → E a vertical vector
field σV on E called the vertical lift of σ. In [1], J. Gancarzewicz proved the
following fact.

Proposition 2.2. For every linear connection D in a vector bundle E over M
and every classical linear connection ∇ on M , there exists a unique classical linear
connection Θ = Θ(D,∇) on the total space E with the following properties

ΘXDY D = (∇XY )D, ΘXDσV = (DXσ)V ,

ΘσV XD = 0, ΘσV σV1 = 0

for all vector fields X,Y on M and all sections σ, σ1 of E.



118 W. M. MIKULSKI

It is well-known (see [2]) that every classical linear connection ∇ on an m-

manifold M can be extended to a linear connection D
(r)
∇ = ∇ in

⊕r
k=0

k⊙
T ∗M ⊗

T ∗M by

(∇XA)(X0, . . . , Xk) = XA(X0, . . . , Xk)−
k∑
i=0

A(X0, . . . ,∇XXi, . . . , Xk),

A ∈ Γ(

k⊙
T ∗M ⊗ T ∗M), X0, . . . , Xk ∈ X (M), k = 0, . . . , r.

Now, we are in a position to present a natural operator C(r) : Q QJrT ∗.

Example 2.3. As in Example 1 in [7], given a classical linear connection ∇ on
M , by Propositions 2.1 and 2.2, we have the classical linear connection ∇(r) on
JrT ∗M given by

∇(r) := (I∇)−1
∗ Θ(D

(r)
∇ ,∇).

Clearly, the family C(r) : Q QJrT ∗ of operators

C
(r)
M : Q(M)→ Q(JrT ∗M), C

(r)
M (∇) := ∇(r),

where M ∈ obj(Mfm) and ∇ ∈ Q(M), is an Mfm-natural operator.

3. A simple reduction

The set of all Mfm-natural operators C : Q QJrT ∗ is an affine space with the
corresponding vector space of all Mfm-natural operators
∆ : Q (

⊗2
T ∗⊗T )JrT ∗ lifting classical linear connections∇ on m-manifolds M

into tensor fields ∆M (∇) of type (1, 2) on JrT ∗M (the definition is quite similar to
that of natural operators Q  QJrT ∗). Actually, given Mfm-natural operators

C : Q QJrT ∗ and ∆ : Q (
⊗2

T ∗ ⊗ T )JrT ∗ we have Mfm-natural operator
C + ∆ : Q QJrT ∗ given by

(C + ∆)M (∇) := CM (∇) + ∆M (∇), ∇ ∈ Q(M), M ∈ obj(Mfm).

So, as in [7], to describe allMfm-natural operators C : Q QJrT ∗, it is sufficient

to describe all Mfm-natural operators ∆ : Q  (
⊗2

T ∗ ⊗ T )JrT ∗. Further,

because of Proposition 2.1, we can put
⊕r

k=0

k⊙
T ∗ ⊗ T ∗ instead of JrT ∗, and

our problem of describing all Mfm-natural operators C : Q QJrT ∗ is reduced
to that of finding all Mfm-natural operators

∆ : Q (

2⊗
T ∗ ⊗ T )

r⊕
k=0

k⊙
T ∗ ⊗ T ∗

lifting classical linear connections ∇ on m-manifolds into tensor fields ∆M (∇) of

type (1, 2) on
⊕r

k=0

k⊙
T ∗M ⊗ T ∗M .
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As in [7], given a classical linear connection ∇ on M we have

Tv(

r⊕
k=0

k⊙
T ∗M ⊗ T ∗M) = Vv(

r⊕
k=0

k⊙
T ∗M ⊗ T ∗M)⊕H∇v

=̃

r⊕
k=0

k⊙
T ∗xM ⊗ T ∗xM ⊕ TxM

for any v ∈
⊕r

k=0

k⊙
T ∗xM⊗T ∗xM , x ∈M where H∇v is the ∇-horizontal subspace

and the identification =̃ is the standard one. Then, by linear algebra,

(Tv(

r⊕
k=0

k⊙
T ∗M ⊗ T ∗M))∗ ⊗ (Tv(

r⊕
k=0

k⊙
T ∗M ⊗ T ∗M))∗

⊗ Tv(
r⊕

k=0

k⊙
T ∗M ⊗ T ∗M)

= (T ∗xM ⊗ T ∗xM ⊗ TxM)⊕
r⊕
l=0

(T ∗xM ⊗ T ∗xM⊗
l⊙
T ∗xM ⊗ T ∗xM)

⊕
r⊕
l=0

(T ∗xM⊗
l⊙
TxM ⊗ TxM ⊗ TxM)

⊕
r⊕

l,l1=0

(T ∗xM⊗
l⊙
TxM ⊗ TxM⊗

l1⊙
T ∗xM ⊗ T ∗xM)

⊕
r⊕
l=0

(

l⊙
TxM ⊗ TxM ⊗ T ∗xM ⊗ TxM)

⊕
r⊕

l,l1=0

(

l⊙
TxM ⊗ TxM ⊗ T ∗xM⊗

l1⊙
T ∗xM ⊗ T ∗xM)

⊕
r⊕

l,l1=0

(

l⊙
TxM ⊗ TxM⊗

l1⊙
TxM ⊗ TxM ⊗ TxM)

⊕
r⊕

l,l1,l2=0

(

l⊙
TxM ⊗ TxM⊗

l1⊙
TxM ⊗ TxM⊗

l2⊙
T ∗xM ⊗ T ∗xM).

Consequently, our problem of finding of all Mfm-natural operators C : Q  
QJrT ∗ is reduced to that of finding systems ∆C = ((∆1), . . . , (∆8

l,l1,l2
)) of systems

(∆1), . . . , (∆8
l,l1,l2

) of Mfm-natural operators

∆1 : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗, T ∗ ⊗ T ∗ ⊗ T ),

∆2
l : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗, T ∗ ⊗ T ∗⊗

l⊙
T ∗ ⊗ T ∗),
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∆3
l : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗, T ∗⊗

l⊙
T ⊗ T ⊗ T ),

∆4
l,l1 : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗, T ∗⊗

l⊙
T ⊗ T⊗

l1⊙
T ∗ ⊗ T ∗),

∆5
l : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T ⊗ T ∗ ⊗ T ),

∆6
l,l1 : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T ⊗ T ∗⊗

l1⊙
T ∗ ⊗ T ∗),

∆7
l,l1 : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T⊗

l1⊙
T ⊗ T ⊗ T ),

∆8
l,l1,l2 : Q (

r⊕
k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T⊗

l1⊙
T ⊗ T⊗

l2⊙
T ∗ ⊗ T ∗)

transforming classical linear connections ∇ on m-manifolds M into fibred maps

∆1
M (∇) :

⊕r
k=0

k⊙
T ∗M ⊗ T ∗M → T ∗M ⊗ T ∗M ⊗ TM ,. . . , ∆8

l,l1,l2M
(∇) :⊕r

k=0

k⊙
T ∗M⊗T ∗M →

l⊙
TM⊗TM⊗

l1⊙
TM⊗TM⊗

l2⊙
T ∗M⊗T ∗M covering

the identity map of M , where l, l1, l2 = 0, . . . , r.

4. A more reduction

To obtain a more reduction than the above one, we need a preparation.
As in [7], a tensor natural sub-bundle (of type (p, q)) is a natural vector bundle

F :Mfm → VB such that (modulo a natural vector bundle isomorphism) FM ⊂⊗p
TM ⊗

⊗q
T ∗M and Fϕ =

⊗p
Tϕ⊗

⊗q
T ∗ϕ|FM for any m-manifold M and

any Mfm-map ϕ : M →M1.

Proposition 4.1. Let F :Mfm → VB be a tensor natural sub-bundle of type

(p, q). The Mfm-natural operators B : Q  (
⊕r

k=0

k⊙
T ∗ ⊗ T ∗, F ) transform-

ing classical linear connections ∇ on m-manifolds M into fibred maps BM (∇) :⊕r
k=0

k⊙
T ∗M ⊗ T ∗M → FM covering idM are in bijection with the systems

E = (E(k1,...,kj)) of Mfm-natural operators

E(k1,...,kj) : Q  ((
k1⊙

T ⊗ T ) � ... � (
kj⊙

T ⊗ T )) ⊗ F for systems (k1, . . . , kj)
of integers k1, . . . , kj with 0 ≤ k1 ≤ . . . ≤ kj ≤ r, k1 + . . . + kj ≤ q − p − j,

j = 0, 1, 2, . . . If j = 0, (k1, . . . , kj) = ∅, and E∅ : Q F . If q − p− j < 0, any B
is the zero operator. (For �, see below.)

More precisely, the natural operator BE : Q  (
⊕r

k=0

k⊙
T ∗ ⊗ T ∗, F ) corre-

sponding to a system E = (E(k1,...,kj)) (as above) is defined by

BEM (∇)x(v) =
∑

< E
(k1,...,kj)
M (∇)x, vk1 ⊗ . . .⊗ vkj >,
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∇ ∈ Q(M), M ∈ obj(Mfm), x ∈ M , v = (v0, . . . , vr) ∈
⊕r

k=0

k⊙
T ∗xM ⊗ T ∗xM ,

where the (finite) sum
∑

is over all systems (k1, . . . , kj) of integers with 0 ≤ k1 ≤
. . . ≤ kj ≤ r, k1 + . . .+ kj ≤ q − p− j, j = 0, 1, 2, . . .

Conversely, the system EB = (EB;(k1,...,kj)) corresponding to a natural operator

B  (
⊕r

k=0

k⊙
T ∗ ⊗ T ∗, F ) is well-defined by

< E
B;(k1,...,kj)
M (∇)x, vk1 ⊗ . . .⊗ vkj >

=
1

α!

∂

∂tk1
. . .

∂

∂tkj
BM (∇)x(t0v0, . . . , t

rvr)|t0,...,tr=0

where v = (v0, . . . , vr) =
⊕r

k=0

k⊙
T ∗xM ⊗T ∗xM , x ∈M , α = 1k1 + . . .+ 1kj ∈ Nr.

As in [7], in Proposition 4.1, we used the following notation. Given a sequence
V0,. . . ,Vr of different vector spaces and a system (k1, . . . , kj) of integers with 0 ≤
k1 ≤ . . . ≤ kj ≤ r, Vk1� . . .�Vkj denotes the factor space Vk1⊗ . . .⊗Vkj/ ∼ where,
for any u,w ∈ Vk1⊗ . . .⊗Vkj , u ∼ w iff < u,ϕk1⊗ . . .⊗ϕkj >=< w,ϕk1⊗ . . . ϕkj >
(the usual pairing (contraction)) for any (ϕ0, . . . , ϕr) ∈

⊕r
k=0 V

∗
k .

Proof. The proof of Proposition 4.1 is almost the same as that of Proposition
3 in [7]. By the non-linear Petree theorem (see [3]) B is of finite order. Further,
by the invariance with respect to manifold charts, B is determined by the values

(BRm(∇))0(v) ∈ F0Rm

for all classical linear connections ∇ on Rm and all points v = (v0, . . . , vr) ∈⊕r
k=0

k⊙
T ∗0 Rm⊗T ∗0 Rm. We can assume that the coordinates (symbols) of ∇ are

polynomials of a degree that is the finite order of B. Next, by the invariance of B
with respect to the homotheties, we have

BRm((tidRm)∗∇)0(

r⊕
k=0

k⊙
T ∗(tidRm)⊗ T ∗(tidRm)(v)) = tp−qBRm(∇)0(v)

for t > 0. So, the homogeneous function theorem and the Taylor theorem end the
proof. �

5. Corollaries

Applying Proposition 4.1 to natural operators ∆1, . . . ,∆8
l,l1,l2

in item 3, we obtain.

Corollary 5.1. For l = 0, . . . , r any Mfm-natural operator ∆3
l : Q  

(
⊕r

k=0

k⊙
T ∗M ⊗ T ∗, T ∗⊕

l⊙
T ⊗ T ⊗ T ) is the zero one.

Corollary 5.2. For l = 0, . . . , r any Mfm-natural operator ∆5
l : Q  

(
⊕r

k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T ⊗ T ∗ ⊗ T ) is the zero one.

Corollary 5.3. For l, l1 = 0, . . . , r any Mfm-natural operator ∆7
l,l1

: Q  

(
⊕r

k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T⊗

l1⊙
T ⊗ T ⊗ T ) is the zero one.
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Corollary 5.4. The Mfm-natural operators

∆1 : Q (
⊕r

k=0

k⊙
T ∗⊗T ∗, T ∗⊗T ∗⊗T ) are in (the) bijection with the systems

E∆1

= (E∆1;∅, E∆1;(0)) of Mfm-natural operators E∆1;∅ : Q T ∗ ⊗ T ∗ ⊗ T and

E∆1;(0) : Q T ⊗ T ∗ ⊗ T ∗ ⊗ T .

Corollary 5.5. Given natural numbers l = 0, . . . , r theMfm-natural operators

∆2
l : Q  (

⊕r
k=0

k⊙
T ∗ ⊗ T ∗, T ∗ ⊗ T ∗⊗

l⊙
T ∗ ⊗ T ∗) are in (the) bijection with

the systems E∆2
l = (E∆2

l ;(k1,...,kj)) of Mfm-natural operators E∆2
l ;(k1,...,kj) : Q 

((
k1⊙
T ⊗ T )� . . .� (

kj⊙
T ⊗ T ))⊗ T ∗ ⊗ T ∗⊗

l⊙
T ∗ ⊗ T ∗ for systems (k1, . . . , kj)

of integers with 0 ≤ k1 ≤ . . . ≤ kj ≤ r, k1 + . . .+ kj ≤ l + 3− j, j = 0, 1, 2, . . ..

Corollary 5.6. Given natural numbers l, l1 = 0, . . . , r the Mfm-natural oper-

ators ∆4
l,l1

: Q  (
⊕r

k=0

k⊙
T ∗ ⊗ T ∗, T ∗⊗

l⊙
T ⊗ T⊗

l1⊙
T ∗ ⊗ T ∗) are in (the)

bijection with the systems E∆4
l,l1 = (E∆4

l,l1
;(k1,...,kj)) of Mfm-natural operators

E∆4
l,l1

;(k1,...,kj) : Q ((
k1⊙
T ⊗T )� . . .�(

kj⊙
T ⊗T ))⊗T ∗⊗

l⊙
T ⊗T⊗

l1⊙
T ∗⊗T ∗

for systems (k1, . . . , kj) of integers with 0 ≤ k1 ≤ . . . ≤ kj ≤ r, k1 + . . . + kj ≤
l1 + 1− l − j, j = 0, 1, . . .

Corollary 5.7. Given natural numbers l, l1 = 0, . . . , r the Mfm-natural oper-

ators ∆6
l,l1

: Q  (
⊕r

k=0

k⊙
T ∗ ⊗ T ∗,

l⊙
T ⊗ T ⊗ T ∗⊗

l1⊙
T ∗ ⊗ T ∗) are in (the)

bijection with the systems E∆6
l,l1 = (E∆6

l,l1
;(k1,...,kj)) of Mfm-natural operators

E∆6
l,l1

;(k1,...,kj) : Q ((
k1⊙
T ⊗T )� . . .�(

kj⊙
T ⊗T ))⊗

l⊙
T ⊗T ⊗T ∗⊗

l1⊙
T ∗⊗T ∗

for systems (k1, . . . , kj) of integers with 0 ≤ k1 ≤ . . . ≤ kj ≤ r, k1 + . . . + kj ≤
l1 + 1− l − j, j = 0, 1, . . .

Corollary 5.8. Given natural numbers l, l1, l2 = 0, . . . , r the Mfm-natural

operators ∆8
l,l1,l2

: Q (
⊕r

k=0

k⊙
T ∗⊗T ∗,

l⊙
T ⊗T⊗

l1⊙
T ⊗T⊗

l2⊙
T ∗⊗T ∗) are

in (the) bijection with the systems E∆8
l,l1,l2 = (E∆8

l,l1,l2
;(k1,...,kj)) of Mfm-natural

operators

E∆8
l,l1,l2

;(k1,...,kj) : Q  ((
k1⊙

T ⊗ T ) � . . . � (
kj⊙

T ⊗ T ))⊗
l⊙
T ⊗ T⊗

l1⊙
T ⊗

T⊗
l2⊙
T ∗ ⊗ T ∗ for systems (k1, . . . , kj) of integers with 0 ≤ k1 ≤ . . . ≤ kj ≤ r,

k1 + . . .+ kj ≤ l2 − l1 − l − 1− j, j = 0, 1, . . .

6. The main result

Summing up, we have proved the following result.

Theorem 6.1. The Mfm-natural operators C : Q  QT r∗ are in (the) bi-
jection with the systems ∆C = ((∆1), (∆2

l ), (∆
4
l,l1

), (∆6
l,l1

), (∆8
l,l1,l2

)) of systems

(∆1), . . . , (∆8
i,l1,l2

) of Mfm-natural operators corresponding to systems of Mfm-

natural operators(of the form Q 
⊗p

T ⊗
⊗q

T ∗) as in Corollaries 5.4—5.8.
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If r = 0, then l, l1, l2 = 0 only. Consequently E∆1

= (E∆1;∅, E∆1;(0)), E∆2
0 =

(E∆2
0;∅, E∆2

0;(0), E∆2
0;(0,0), E∆2

0;(0,0,0)), E∆4
0,0 = (E∆4

0,0;∅, E∆4
0,0,(0)), E∆8

0,0,0 = (0),

E∆6
0,0 = (E∆6

0,0;∅, E∆6
0,0;(0)). So, Theorem 6.1 for r = 0 can be read as follows.

TheMfm-natural operators C : Q QT ∗ lifting classical linear connections to

the cotangent bundle are in the bijection with the 10-tuples (E∆1;∅, . . . , E∆6
0,0;(0))

containing of Mfm-natural operators

E∆1;∅ : Q T ∗ ⊗ T ∗ ⊗ T,

E∆1;(0) : Q T ⊗ T ∗ ⊗ T ∗ ⊗ T,

E∆2
0;∅ : Q T ∗ ⊗ T ∗ ⊗ T ∗,

E∆2
0;(0) : Q T ⊗ T ∗ ⊗ T ∗ ⊗ T ∗,

E∆2
0;(0,0) : Q (T � T )⊗ T ∗ ⊗ T ∗ ⊗ T ∗,

E∆2
0;(0,0,0) : Q (T � T � T )⊗ T ∗ ⊗ T ∗ ⊗ T ∗,

E∆4
0,0;∅ : Q T ∗ ⊗ T ⊗ T ∗,

E∆4
0,0;(0) : Q T ⊗ T ∗ ⊗ T ⊗ T ∗,

E∆6
0,0;∅ : Q T ∗ ⊗ T ⊗ T ∗,

E∆6
0,0;(0) : Q T ⊗ T ∗ ⊗ T ⊗ T ∗.

Using the description of Mfm-natural operators Q  
⊗p

T ⊗
⊗q

T ∗ of [3]
(see item 1), we can explicitly describe the above 10-tuples. For example, any

Mfm-natural operator E∆1;∅ : Q T ∗ ⊗ T ∗ ⊗ T is the linear combination (with
real coefficients) of threeMfm-natural operators (the connection torsion operator
T∇, the operator δM ⊗C1

1T∇ (the tensor multiplication of the identity tensor field
δM : TM → TM and the contraction of the connection torsion) and the operator
C1

1T∇⊗ δ∗M ). In the case of torsion free connections, any such operator is the zero

one. Similarly, any Mfm-natural operator E∆1;(0) : Q  T ⊗ T ∗ ⊗ T ∗ ⊗ T is
the linear combination of two connection independent natural tensors (from the
identity tensor TM⊗TM → TM⊗TM by means of the permutations of indices),
e.t.c. In this way, we may reobtain (in another form) the result of M. Kureš [5] (in
the case of natural operators Qτ  QT ∗) and get a more general similar result in
the case of not necessarily torsion free connections.

The explanation of our result in the case r = 1 (i.e. in the case of natural
operators Q  QJ1T ∗ lifting classical linear connections to the first jet prolon-
gation of the cotangent bundle) is more sophisticated but feasible. Indeed, if

r = 1, then l, l1, l2 = 0, 1. Consequently E∆1

= (E∆1;∅, E∆1;(0)). Next, E∆2
0 =

(E∆2
0∅, E∆2

0;(0), E∆2
0;(1), E∆2

0;(0,0), E∆2
0;(0,1), E∆2

0;(1,1), E∆2
0;(0,0,0), E∆2

0;(0,0,1),

E∆2
0;(0,1,1), E∆2

0;(1,1,1)) and E∆2
1 = (E∆2

1;∅, E∆2
1;(0), E∆2

1;(1), E∆2
1;(0,0), E∆2

1;(0,1),

E∆2
1;(1,1), E∆2

1;(0,0,0), E∆2
1;(0,0,1), E∆2

1;(0,1,1), E∆2
1;(1,1,1), E∆2

1;(0,0,0,0), E∆2
1;(0,0,0,1),

E∆2
1;(0,0,1,1), E∆2

1;(0,1,1,1), E∆2
1;(1,1,1,1)). Next E∆4

1,0 = (E∆4
1,0;∅;E∆4

1,0;(0), E∆4
1,0;(1),

E∆4
1,0;(0,0), E∆4

1,0;(0,1), E∆4
1,0;(1,1)), E∆4

0,0 = (E∆4
0,0;∅, E∆4

0,0;(0), E∆4
0,0;(1)), E∆4

1,1 =

(E∆4
1,1;∅, E∆4

1,1;(0), E∆4
1,1;(1)) and E∆4

0,1 = (E∆4
0,1;∅). Similarly E∆6

0,1 = (E∆6
0,1;∅,
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E∆6
0,1;(0), E∆6

0,1;(1), E∆6
0,1;(0,0), E∆6

0,1;(0,1), E∆6
0,1;(1,1)), E∆6

0,0 = (E∆6
0,0;∅, E∆6

0,0;(0),

E∆6
0,0;(1)), E∆6

1,1 = (E∆6
1,1;∅, E∆6

1,1;(0), E∆6
1,1;(1)) and E∆6

1,0 = (E∆6
1,0;∅). Next

E∆8
0,0,1 = (E∆8

0,0,1;∅), and E∆8
l,l1,l2 = (0) if l = 1 or l1 = 1 or l2 = 0.

So, Theorem 6.1 for r = 1 can be read as follows.
The Mfm-natural operators Q  QJ1T ∗ are in (the) bijection with the 54-

tuples of Mfm-natural operators

E∆1;∅ : Q T ∗ ⊗ T ∗ ⊗ T,
......................................................

E∆8
0,0,1;∅ : Q T ⊗ T ⊗ T ∗ ⊗ T ∗.

Clearly, the dots denote the respective types Mfm-natural operators (we do not
present the dots explicitly because this would require about two pages). Using the
description of Mfm-natural operators Q 

⊗p
T ⊗

⊗q
T ∗ of [3] (see item 1) we

may describe explicitly all above 54-tuples and describe explicitly allMfm-natural
operators C : Q QJ1T ∗.
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