
Math. Appl. 3 (2014), 45–59
DOI: 10.13164/ma.2014.04

ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS AND

HEXAGONAL PICTURE LANGUAGES

THANGASAMY KAMARAJ, DORAISWAMY LALITHA,

DURAIRAJ GNANARAJ THOMAS, ROBINSON THAMBURAJ

and ATULYA K. NAGAR

Abstract. Adjunct Hexagonal Array Token Petri Net Structures (AHPN) are re-

cently introduced hexagonal picture generating devices which extended the Hexag-

onal Array Token Petri Net Structures . In this paper we consider AHPN model
along with a control feature called inhibitor arcs and compare it with some ex-

pressive hexagonal picture generating and recognizing models with respect to the
generating power.

1. Introduction

Hexagonal arrays and hexagonal patterns are known to occur in studies of picture
processing and scene analysis [9–12]. In [10] the results of some experiments using
COMPAX to produce isometric views of scenes of rectangular parellepipeds showed
the generation of hexagonal arrays. In [12] hexagonal arrays on triangular grid are
viewed as two-dimensional representation of three-dimensional blocks, and “per-
ceptual twins” of pictures of given set of blocks. In biomedical image processing, it
has been shown that a programmable cellular automaton with hexagonal structure
is a worthy device for rapid processing of biomedical images [9]. In a chromosome
analysis program [9], the circumscribing polygons associated with each image turn
out to be hexagons. Since late seventies, formal models to generate or recognize the
hexagonal pictures have been found in the literature [3,5–7,12,14] in the framework
of pattern recognition and image analysis. Some of the classical formalisms to gen-
erate hexagonal arrays are Hexagonal Kolam Array Grammars (HKAG) [12] and
its generalization Hexagonal Array Grammars (HAG) [13]. Sequential and parallel
applications of rewriting rules and arrow head catenations are the common features
of those models. Hexagonal Tile Rewriting Grammars [16] and Regional Hexagonal
Tile Rewriting Grammars [5] are the recent hexagonal tiling based isometric gram-
mar models, which have more generative capacity than HAG. Differently, Pure 2D
Hexagonal Context Free Grammars [14, 15] and Hexagonal Prusa Grammars [6]
are the simple yet expressive non-isometric formalisms, where parallel application
of rewriting rules are attempted in the derivation of hexagonal pictures. On the

MSC (2010): primary 68Q42, 68Q45.
Keywords: Petri nets, hexagonal array tokens, adjunction, hexagonal grammars, hexagonal

tiling systems.
We thank Liverpool Hope University for the support.

45



46 T. KAMARAJ ET AL.

other hand, Hexagonal Tiling System (HTS) [3] equivalent to hexagonal online
tessellation automata is a recognizing device for the class, Hexagonal Recogniz-
able Languages (HREC), which involves the projection of languages belonging to
the class, Hexagonal Local Languages (HLOC) defined by a finite set of hexagonal
tiles.

Recently another hexagonal picture generating mechanism, Hexagonal Array
Token Petri Net Structure (HPN) [7] has been evolved from string generating
Petri nets [1, 4]. Petri net is one of the formal models used for analysing systems
that are concurrent, distributed, and parallel. In HPN, hexagonal array tokens
are used to simulate the dynamism of the net. In [7], the authors also introduced
a generalization of this model, Adjunct Hexagonal Array Token Petri Net Struc-
ture (AHPN), incorporating adjunction operation, a variation in the position of
arrowhead catenations. An AHPN model generates the same family of languages
generated by some of the classes of HKAG and HAG.

With the purpose of gaining more generative power, we now consider an AHPN
model along with a control feature, called inhibitor arcs like in [8], comparing it
with some expressive hexagonal picture generating and recognizing models.

This paper is organized in the following manner. In Section 2, basic definitions
of hexagonal arrays, Petri nets, and notions of Petri nets pertaining to hexagonal
arrays are recalled. In Section 3, we recall the definition of AHPN in more general
form and provide some illustrative examples. In Section 4 we compare AHPN with
various hexagonal array grammars and also with HREC and HLOC with respect
to the generative capacity.

2. Preliminaries

In this section, we review some of the definitions of hexagonal arrays, Petri nets,
and notions of Petri nets pertaining to hexagonal arrays. The following notations
and definitions are mainly from [3–5,12].

Let T be a finite alphabet of symbols. A hexagonal array of symbols of T is
a hexagonal picture over T .

We consider hexagons of the type

right most vertex

lower right vertex

upper right vertexupper left vertex

left most vertex

lower left vertex

For example, a hexagonal picture over the alphabet {a} is
a a a

a a a a
a a a

. With

respect to a triad x y
z of triangular axes x, y, z, the co-ordinates of each

element of a hexagonal picture can be fixed [3].
The set of all hexagonal arrays over the alphabet T is denoted by T ∗∗H and the

set of all non-empty hexagonal arrays over T is denoted by T++H . A non-empty
hexagonal picture language L over T is a subset of T++H .



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 47

For p ∈ T++H , let p̂ be the hexagonal array obtained by surrounding p with
a special boundary symbol # 6∈ T . For example,

if p =
a a

a a a
a a

then p̂ =

# # #
# a a #

# a a a #
# a a #

# # #

.

Given a picture p ∈ T++H , let |p|x denote the number of elements in the border
of p from the upper left vertex to the leftmost vertex in the direction ↙ called x
direction, |p|y denotes the number of elements in the border of p from the upper
right vertex to the right most vertex in the direction ↘ called y direction and |p|z
denote the number of elements in the border of p from the upper left vertex to the
upper right vertex in the direction→ called z direction. The triplet (|p|x, |p|y, |p|z)
is called the size of a hexagonal picture p. The directions are fixed with the origin
of reference as the upper left vertex, having co-ordinates (1, 1, 1). Let pijk denote
the symbol in p, called a pixel, with the coordinates (i, j, k) where 1 ≤ i ≤ |p|x,
1 ≤ j ≤ |p|y, 1 ≤ k ≤ |p|z. Let T (`,m,n)H be the set of all hexagonal pictures
of size (`,m, n). A typical hexagonal array of size (`,m, n) can be denoted by
[pijk](`,m,n)H . Given a hexagonal picture p of size (`,m, n), we denote by Bg,h,k(p)
the set of all hexagonal sub pictures of p of size (g, h, k), where g ≤ `, h ≤ m and
k ≤ n. Each member of B2,2,2(p) is called a hexagonal tile. We denote the set of
all hexagonal tiles contained in a picture p̂ by [[p̂]].

The notions of non-convex hexagonal arrays called arrow heads, and arrow head
catenations in six directions are adapted as in [3, 12]. An arrowhead is written in
the form, {· · · < y > . . . } where < y > denotes the vertex, and the arrowhead is
written in the clockwise direction. An arrowhead of thickness one is referred to as
a unit arrowhead.

A Petri Net is one of the mathematical modeling tools for the description of
distributed systems involving concurrency and synchronization. It is a weighted
directed bipartite graph consisting of two kinds of nodes called places (represented
by circles) and transitions (represented by bars). Places may contain a discrete
number of marks called tokens. In the abstract sense, a transition of a Petri net
may fire if it is enabled; when there are sufficient tokens in all of its input places.
In the hexagonal array generating Petri Net structure, hexagonal arrays over an
alphabet J are used as tokens in some input places.

An inhibitor arc from a place ql to a transition tk has a small circle in the place
of an arrow in regular arcs. This means that the transition tk is enabled only if ql
has no tokens in it. In other words, a transition is enabled only if all its regular arc
input places have required a number of tokens and all its inhibitor arc (if exists)
input places have zero tokens.

3. Adjunct hexagonal array token Petri net structure

In this section, we recall the notions of Adjunct Hexagonal Array Token Petri Net
Structure [7] with different adaptations and also in a more generalized form and
give some examples.



48 T. KAMARAJ ET AL.

Adjunction is a generalization of arrowhead catenation. In the upper right

(UR) arrowhead catenation H A, the arrow head A is joined (catenated) to H
after the unit UR arrowhead present in the border of H. But an UR adjunction
can join the array A into array H after or before any unit UR arrowhead of H.
Let H be a hexagonal array of size (|H|x, |H|y, |H|z) in J∗∗ called host array;
A ⊂ J∗∗ be an arrowhead language whose members, called adjunct arrow heads,
have fixed thickness and varying length which depend on the corresponding size
parameters of the host array H. For example, if A is an adjunct UR-arrowhead,
|A|x (thickness) is fixed and the other two parameters |A|y, |A|z (length) depend
on the corresponding parameters |H|y, |H|z of the host array H.

In the host array H, there are |H|x number of unit UR-arrowheads
(LL-arrowheads) present, which we denote by ur1, ur2, ur3, . . . , ur|H|x
(ll1, ll2, . . . , ll|H|x). Here, ur1(ll1) denotes the border unit arrowhead and ur|H|x
(ll|H|x) denotes the innermost unit arrowhead in the UR (LL) direction. Any
position between uri and urj , i < j, is called after uri (auri) or before urj (burj).
An UR (LL) adjunct arrow head A can be joined into the host array H in |H|x+1
positions subject to the condition of arrowhead catenation. An UR(LL) adjunc-
tion rule is a tuple (H,A, buri(blli)/auri(alli)), 1 ≤ i ≤ |H|x joining A into H
before uri (lli) or after uri (lli).

Similarly, in a host array H, |H|y a number of unit arrowheads in the LR (UL)
direction are found. They are denoted by

lr1, lr2, . . . , lr|H|y (ul1, ul2, ul3, . . . , ul|H|y).

An LR (UL) adjunct arrow head A can be joined into the host array H in |H|y +1
positions subject to the condition of arrowhead catenation. An LR (UL) adjunc-
tion rule is a tuple (H,A, blri(buli)/alri(auli)), 1 ≤ i ≤ |H|y joining A into H
before lri (uli) or after lri (uli).

Again, in a host array H, |H|z a number of unit arrowheads in the L (R)
direction are found. They are denoted by l1, l2, . . . , l|H|z (r1, r2, r3, . . . , r|H|z). An
L (R) adjunct arrow head A can be joined into the host array H in |H|z + 1
positions subject to the condition of arrowhead catenation. An L(R) adjunction
rule is a tuple (H,A, bli(bri)/ali(ari)), 1 ≤ i ≤ |H|z joining A into H before li (ri)
or after li (ri).

Figure 2 (a) shows all the unit arrowheads in the UR, LR and L directions for
the hexagon in Figure 1. The thick lines show the unit UR arrowheads. The dotted
lines show the unit LR arrowheads. The normal lines show the unit L arrowheads.
Figure 2 (b) shows the duals of the arrow heads given in Figure 2 (a).

a a a
a a a a
a a a a
a a a

Figure 1. Hexagonal array.

Definition 3.1. An Adjunct Hexagonal Array Token Petri Net Structure
(AHPN) is a five tuple P =< J,C,M0, ρ, F > where J is a given alphabet,



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 49

2

1

2
l

1
l

r
3

l ll
2 l

1

l
2

l
3

123

ll
1

l 3
l 2l 1

ur

ur

r

r

u

u

u

r r r

Figure 2. (a) Positions of Adjunctions in the directions of UR, LR and L, (b) Positions of

Adjunctions in the dual directions.

C =< Q, T , I, O > is a Petri net structure [7] with tokens as hexagonal arrays
over J and T may contain transitions with inhibitor arcs, M0 : Q → J∗∗, is the
initial marking of the net, ρ : T → L, a mapping from the set of transitions to the
set of labels where some of the transitions may have arrowhead adjunction rules
as the labels and F ⊂ Q, is a finite set of final places. In AHPN, the types of
transitions which can be enabled and fired are similar to that of HPN [7] except
the type (iii) where labels of transitions are arrowhead adjunction rules instead of
arrowhead catenation rules.

Definition 3.2. If P is an AHPN, then the hexagonal picture language gen-
erated by P is defined as L(P ) = {X ∈ J∗∗H/X is in the place q for some q
in F}. Starting with hexagonal arrays (tokens) over a given alphabet as initial
marking, all possible sequences of transitions are fired. Set of all arrays created in
final places F is called the language generated by the AHPN. We denote by AHPL
the family of hexagonal picture languages generated by Adjunct Hexagonal Array
Token Petri Net Structures

Example 3.3. Consider the AHPN, P1 =< J,C,M0, ρ, F > where J = {0, 1},
C = (Q, T , I, O), Q = {q1, q2, q3}, T = {t1, t2, t3}, I(t1) = {q1}, I(t2) = {q2},
I(t3) = {q3}, O(t1) = {q2}, O(t2) = {q3}, O(t3) = {q1}, M0 is the initial marking:
the array S is in q1 and there is no array in q2 and q3, ρ(t1) = (H,A1, aur1),
ρ(t2) = (H,A2, alr1), ρ(t3) = (H,A3, al1) and F = {q1}. The arrays used in the
net are defined as follows:

S =
1 1

1 1 1
1 1

, A1 = 1(0)|H|z−2 < 0 > (0)|H|y−21,

A2 = 1(0)|H|x−2 < 0 > (0)|H|z−21 and A3 = 1(0)|H|y−2 < 0 > (0)|H|x−21. The
Petri net graph is given in Figure 3.

Initially t1 is the only enabled transition. Firing of t1 adjoins a UR arrowhead
1 0

1
(taken from the language A1) after the unit upper right arrowhead ur1

(in other words: just inside the border UR arrowhead) of array S and puts the
derived array in the place q2, making t2 enabled. Firing t2 adjoins a LR arrowhead

1
0

1 0
(taken from the language A2) after the unit LR arrowhead lr1 (in other



50 T. KAMARAJ ET AL.

S

2

3 1

1
1 1

1 2

3

q q

t  (H,A  , aur  )

t  (H,A  , al  )

t  (H,A  , alr )

q

2
1

3

Figure 3. Petri net to generate equal sized hexagonal pictures of a’s.

words: just inside the border LR arrowhead) of the array H in q2 and puts the

derived array in q3 making t3 enabled. Firing t3 adjoins a L arrowhead

1
0

0
0

1
(taken from the language A3) after the unit L arrowhead l1 (in other words: just
inside the border L arrowhead) of the array H in q3 and puts the derived array in
q1.

When the sequence of transitions t1t2t3 fires, the hexagonal array that reaches
the output place q1 is shown as

1 1
1 1 1

1 1

t1
=⇒

1 1
1 0 1

1 1 1
1 1

t2
=⇒

1 1
1 0 1

1 1 0 1
1 0 1

1 1

t3
=⇒

1 1 1
1 0 0 1

1 0 1 0 1
1 0 0 1

1 1 1

.

Firing the sequence (t1t2t3)2 generates the output array as

1 1 1 1
1 0 0 0 1

1 0 0 0 0 1
1 0 0 1 0 0 1

1 0 0 0 0 1
1 0 0 0 1

1 1 1 1

.

Firing sequence (t1t2t3)n−1 gives the nth array of the language. The language L1

generated by Petri net P1 is the set of all equal sized hexagonal pictures over {0, 1}
with 1’s in the border and at the center and other elements are 0’s.

It should be noted that the sizes of the arrowheads taken from the languages
A1, A2, A3 are not fixed, but vary depending on the sizes of the hexagons H in the
input place of the transition, so that the condition for catenation is satisfied.



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 51

Example 3.4. If in Example 3.3, J = {a}, S =
a a

a a a
a a

,

A1 = (a)|H|z−1 < a > (a)|H|y−1, A2 = (a)|H|x−1 < a > (a)|H|z−1

and A3 = (a)|H|y−1 < a > (a)|H|x−1, then the language L2 of hexagonal pictures
over {a} with equal sides is generated.

Example 3.5. Consider the Adjunct Array token Petri net structure
P3 =< J,C,M0, ρ, F >, where J = {a}, the Petri net structure is C = (Q, T , I, O)
withQ = {p1, p2, p3, p4, p5, p6, p7, p8}, T = {t1, t2, t3, t4, t5, t6, t7}, I(t1) = {p1, p2},
I(t2) = {p3}, I(t3) = {p4}, I(t4) = {p5}, I(t5) = {p6}, I(t6) = {p7}, I(t7) = {p2},
O(t1) = {p3}, O(t2) = {p4}, O(t3) = {p5}, O(t4) = {p2, p6}, O(t5) = {p7},
O(t6) = {p1, p1}. Since the weight of the arc from t6 to p1 is two, O(t6) is con-
taining p1 two times. This implies that firing t6 will deposit two copies of the
hexagonal array in p1.
p1 is an inhibitor input for both t5 and t7, p6 is an inhibitor input for t6 and p7

is an inhibitor input for t1. M0, the initial marking is the array S in p1, p2, p8.
ρ : T → L is defined as follows: ρ(t1) = p2, ρ(t2) = (H,A1, aur1), ρ(t3) =

(H,A2, alr1), ρ(t4) = (H,A3, al1), ρ(t5) = λ, ρ(t6) = λ, ρ(t7) = λ, F = {p8}. The
Petri net graph is given in Figure 4.

2

t  (H,A , bl )
4

t  (H,A , blr )
3

8 t7

1 7

6 5 6

4

2
1 2

p
5

p

p

t

p

pt

p

t  (p  ) t  (H, A , bur )
p

S

S

S

2 11

3 1 2 1

3
p

Figure 4. Petri net with inhibitor arcs to generate hexagons of a’s of size (2n, 2n, 2n).

The arrays used are S =
a a

a a a
a a

, A1 =

(
a
a

)|H|z−1〈 a
a

〉(
a
a

)|H|y−1
, A2 =

(
a
a

)|H|x−1〈 a
a

〉(
a
a

)|H|z−1
and A3 =

(
a
a

)|H|y−1〈 a
a

〉(
a
a

)|H|x−1
.

To start with, only t1 is enabled. Firing the sequence of transitions t1t2t3t4
results in a hexagonal picture of a’s of size 4 × 4 × 4 in p2 and p6. At this stage
both t5 and t7 are enabled. Firing the sequence t1t2t3t4t7 puts a hexagonal picture
of size 4×4×4 in p8. Firing t5 pushes the array to p7, emptying p6. In this position



52 T. KAMARAJ ET AL.

t6 is enabled. Firing t6 puts two copies of same array in p1. Since at this stage
there are two tokens in p1, the sequence t1t2t3t4 has to fire two times to empty
p1. The firing of the sequence t5t6(t1t2t3t4)2t7 puts a hexagonal picture of a’s of
size 8× 8 in p8. The inhibitor input p1 makes sure that a square of size 6× 6 does
not reach p8. This AHPN generates the language L3 of hexagonal pictures of a’s
of size (2n, 2n, 2n), n ≥ 1.

Example 3.6. The AHPN P4 =< J,C,M0, ρ, F > with J = {1, 2, 3}, F =

{p, p1} given in Figure 6, where S =

1 1
1 3 1

1 2 1
1 1

, A

(
1
1

)〈
2
3

〉(
1
1

)
, generates the

language L4 of hexagonal arrays of size (2n+1, 2, 2), n ≥ 1, with interior elements
along the x-direction forming the pattern 2n3n and elements in the border are 1’s.
A typical picture in this language is given by Figure 5.

1 1
1 3 1

1 3 1
1 2 1

1 2 1
1 1

Figure 5. An hexagonal array in the language L4.

|H|  +1x
2

p

S

1

1
p

t (H, A, all         )

Figure 6. Petri net to generate the language L4.

4. Comparative results

We now recall the definitions of some of the expressive parallel rewriting hexagonal
grammar devices and compare them with AHPN for the hierarchy.

Definition 4.1. A pure 2D hexagonal context-free grammar (HCFGpure) [15]
is a construct G = (T, Pur, Pul, Plr, Pll, Pl, Pr,M0), where T is a finite set of
symbols, Pur = {turi/1 ≤ i ≤ m}; Each turi , (1 ≤ i ≤ m), called a UR table, is
a set of context-free rules of the form a → α, a ∈ T , α ∈ T ∗ such that any two
rules of the form a → α, b → β in turi , we have |α| = |β| where |α| denotes the
length of α, each of the other five components Pul, Plr, Pll, Pl and Pr is similarly
defined, M0 ⊆ T++H is a finite set of hexagonal arrays or arrow heads, named
axioms. Derivations are defined as follows: For any two hexagonal arrays H1, H2,



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 53

we write H1 ⇒ H2 if H2 is obtained from H1 by rewriting all the symbols in an
unit arrowhead of H1 by rules of a relevant table in Pur ∪Pul ∪Plr ∪Pll ∪Pl ∪Pr.
∗⇒ is the reflexive transitive closure of ⇒. The hexagonal picture language L(G)

generated by G is the set {H/H0
∗⇒ H ∈ T ∗∗H , for some H0 ∈ M0}. We

denote by HCFLpure the family of all hexagonal picture languages generated by
pure 2D hexagonal context-free grammars. To augment the expressive power of
HCFGpure, we associate a control language to the sequence of table rules to be
used like in [15].

Definition 4.2. A pure 2D hexagonal context-free grammar with regular con-
trol ((R)HCFGpure) is a tuple Gr = (G,Γ, C), where

(1) G is a HCFGpure,
(2) Γ is the control alphabet, the set of labels of the rule tables in Pur ∪Pul ∪

Plr ∪ Pll ∪ Pl ∪ Pr,
(3) C ⊆ Γ∗ is the regular control associated with the Gr.

If H ∈ T ∗∗H and H0 ∈M0, H is derived from H0 in Gr by means of a control
word w = w1w2 · · · ∈ C, in symbols C ⇒w H, if H is obtained from H0 by
applying the table rules as in the sequence of tables w1w2 . . . . The language L(G)
generated by (R)HCFGpure Gr is the set of pictures {H/H0 ⇒w H ∈ T++H

for some w ∈ C}. We denote by (R)HCFLpure the family of hexagonal picture
languages generated by pure 2D hexagonal context-free grammars with regular
control.

Example 4.3. The language L2 of hexagonal pictures over {a} with equal sides
in Example 3.4 can be generated by (R)HCFGpure < G, {ul, ll, r}, ((ul)(ll)r)∗ >

where G =< {a}, {λ}, {λ}, {λ}, {ul}, {ll}, {r},M0 >, andM0 =

 a a
a a a
a a

,

ul = {a ↖ a}, ll = {a ↙ a} and r = {a → a}. The derivation of hexagonal
picture of size (3, 3, 3) from the axiom hexagonal array is given as follows

a a
a a a
a a

⇒

a a
a a a
a a a
a a

⇒

a a
a a a

a a a a
a a a
a a

⇒

a a a
a a a a

a a a a a
a a a a
a a a

.

To increase the generating power of (R)HCFGpure further, we refine the defi-
nition of this class of grammars like that of pure 2D rectangular picture grammars
considered in [14] but adapted as in [2].

Definition 4.4. An extended pure 2D hexagonal context-free grammar with
regular control (R)HCFGexpure is a pure 2D hexagonal context free grammar
with regular control, with the alphabet T = Tf ∪ Tc where Tf is the alphabet of
final symbols defining the hexagonal pictures and Tc is a set of control symbols
which are involved only in the process of derivation and they do not appear in
the final picture. We denote by (R)HCFLexpure the family of hexagonal picture
languages generated by Extended pure 2D hexagonal context-free grammars with
regular control.



54 T. KAMARAJ ET AL.

Example 4.5. The language L4 in Example 3.6 can be generated by
a (R)HCFGexpure < G, {ur1, ur2}, C > where G =< Tf ∪ Tc, {ur1, ur2}, {λ},

{λ}, {λ}, {λ}, {λ}, M0 > and Tf = {1, 2, 3}, Tc = {x, y}, M0 =


1 1

z y 1
z x z

1 z

,

ur1 = {z ↗ 1z, x ↗ 2x}, ur2 = {z ↗ 1z, y ↗ 3y}. The regular con-
trol language, C = ((ur1)(ur2))∗ (ur′1) (ur′2) where ur′1 = {z ↗ 1, x ↗ 2} and
ur′2 = {z ↗ 1, y ↗ 3}. The sample derivation of a hexagonal picture of size (5, 2,
2) in this language is shown below.

1 1
z y 1

z x z
1 z

⇒

1 1
z y 1

z x z
1 2 z

1 1

⇒

1 1
z y 1

1 3 z
z x 1

1 2 z
1 1

⇒

1 1
z y 1

1 3 z
z x 1

1 2 z
1 1

⇒

1 1
z y 1

1 3 z
1 2 1

1 2 1
1 1

⇒

1 1
1 3 1

1 3 1
1 2 1

1 2 1
1 1

.

Proposition 4.6. The family (R)HCFLpure properly includes the family
HCFLpure languages.

Proof. Every HCFGpure G can be considered (R)HCFGpure with regular con-
trol language C = Γ∗, where Γ is the control alphabet. The language L2 of hexago-
nal pictures over {a} with equal sides is shown to be in (R)HCFLpure, in Example
4.3. But L2 cannot be generated by any HCFGpure as application of the ul, ll, r
table rules without any control leads to the generation of hexagonal pictures over
{a} with unequal sides. �

Theorem 4.7. The family (R)HCFLpure is properly contained in AHPL.

Proof. Let L be the hexagonal picture language generated by the pure 2D hexag-
onal context-free grammar G = (T, Pur, Pul, Plr, Pll, Pl, Pr,M0), with a regular
control language over the set of labels, say (`1, `2, . . . , `m).

If a UR table, say turi , rewrites the arrowhead uri then every symbol in uri
has to be rewritten using the rules of the table in parallel. But application of
an UR-adjunction rule (H,A, buri/auri) will also have the same result as that of
table rule turi . In other words, application of a UR table is equivalent to a UR-
adjunction. Hence, for every UR table turi , a corresponding UR-adjunction rule
(H,A, auri/buri) can be defined. Similarly, for every X table txj

, a corresponding
X-adjunction rule (A,B, axj/bxj) can be defined, where X ∈ {LR,L,LL,UL,R}
and x ∈ {lr, l, ll, ul, r}. If it is assumed that the derivation M0

w⇒ M yields
a hexagonal array M of the language, where w is a regular control word `1`2 . . . `m,



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 55

then the adjunct hexagonal array token Petri net structure P can be constructed
as follows.

Let p0 be a place with a hexagonal array M0 as token. Let t1 be a transition with
the adjunction rule corresponding to `1 as a label; p0 being the input place and p1
as its output place. Have a transition t2 with the adjunction rule corresponding to
`2 as a label; p1 being the input place and p2 as its output place and so on. Have
a transition tm with the adjunction rule corresponding to the table `m as label;
pm−1 being the input place and p0 as its output place. Let F = {p0}.

The firing of the sequence t1t2 . . . tm will have the same effect as applying the
rules `1, `2, . . . , `m in that order once. The firing of the the sequence (t1t2 . . . tm)n

generates the same array which is obtained by applying the set of tables in the
control word (`1`2 . . . `m)n. Thus, the Petri net P constructed will generate the
same language L as generated by the RP2DHCFG, G. In other words, The family
(R)HCFLpure is included in AHPL.

For the strict inclusion, we consider the language L4 in Example 3.6. Suppose
there exists an (R)HCFGpure < G, {ur1, ur2}, ((ur1)(ur1))∗ > where

G =< {1, 2, 3}, {ur1, ur2}, {λ}, {λ}, {λ}, {λ}, {λ},M0 > and M0 =

1 1
1 3 1

1 2 1
1 1

,

ur1 = {1 ↗ 11, 2 ↗ 22}, ur2 = {1 ↗ 11, 3 ↗ 33}. Then there is a possibility

of applying the table rule ur1 to the unit arrowhead
1 1

1
to get

1 1
1 1 1

1
as

a part of the picture. But such a picture is not in L4. �

Now by Proposition 4.6 and Theorem 4.7, we can state the following result
immediately.

Corollary 4.8. The family AHPL properly contains the family HCFLpure.

Theorem 4.9. (i) (R)HCFLexpure and AHPL are not disjoint.
(ii) There exists a language in AHPL which cannot be generated by any

(R)HCFGexpure.

Proof. The AHPL language L4 considered in Example 3.4 is shown to be in
(R)HCFLexpure (see Example 4.5). Hence, (R)HCFLexpure and AHPL are not
disjoint.

The AHPL language L3, in Example 3.5 cannot be generated by any
(R)HCFGexpure G, since a hexagonal picture of size (2n, 2n, 2n) cannot be de-
rived from that of size (2n−1, 2n−1, 2n−1) because there should exists a procedure
to apply the rules exactly 2(n− 1) times on UR, LR, L arrowheads of the picture.
But the number of applications of rules to be applied cannot be a function of the
dimension of the hexagonal picture. Hence, the second part of the theorem is
proved. �

Definition 4.10. A Hexagonal Prusa Grammar (HGprusa) [6] is a tuple, G =<
N,T, P, S >, where N is the set of non terminals, T is set of terminals, P is set



56 T. KAMARAJ ET AL.

of productions, and S ∈ N is the start symbol. The hexagonal picture language
L(G,C) over T for every C ∈ N is defined by the following recursive rules.

(1) Terminal rule: If C → X is in P , and X ∈ (T++H ∪ T+), then X ∈ L(G,C).

(2) Mixed rule: Let C → X be a production in P with X ∈ ∪(N ∪ T )(`
′,m′,n′)H ,

1 ≤ `′ ≤ `, 1 ≤ m′ ≤ m and 1 ≤ n′ ≤ n and Qijk (1 ≤ i ≤ `, 1 ≤ j ≤ m, 1 ≤
k ≤ n) be the pictures such that

(i) if Xijk ∈ T then Qijk = Xijk,
(ii) if Xijk ∈ N then Qijk ∈ L[G,X].

If Q = [Qijk](`
′,m′,n′)H is defined through string catenation (or) arrow head cate-

nation, then Q ∈ L[G,C].
Here T+ denotes set of all non empty strings in any of the 3 directions parallel

to the triangular axes. The set L[G,C] contains all and only pictures that can
be obtained by applying a finite sequence of rules (i) and (ii). The hexagonal
language L[G] generated by the grammar G is defined to be the language L[G,S].
HLprusa is the class of all languages generated by these grammars.

Informally, the rules may be either terminal array rules or mixed array rules
involving terminals and non terminals. In both types of rules, the right-hand
side array may be a hexagon or arrowhead or string in one of the three possible
triangular axis directions.

Example 4.11. The language L1 given in Example 3.3 can be generated by
a HGprusa, G =< N,T, P, S > where N = {S,H,A,B,C,A′, B′, C ′}, T = {0, 1}
and

P =

S → 1 A
C H 1

1 B
, A→ 1 A

1

/
1, B → 1

1 B

/
1, C →

1
C

1

/
1,

H →
0 A′

C ′ H 0
0 B′

/
1, A′ → 0 A′

0

/
0, B → 1

0 B′

/
0, C →

0
C ′

0

/
0

 .

The derivation of the first two pictures in this language is as follows. Since 1 ∈
L[G,A] ∩ L[G,C] ∩ L[G,B] ∩ L[G,H],

1 1
1 1 1

1 1
∈ L[G,S] by the mixed rule S →

1 A
C H 1

1 B
.

Since
0 0

0 1 0
0 0

∈ L[G,H],
1 1

1
∈ L[G,A],

1
1 1

∈ L[G,B] and
1

1
1
∈

L[G,C], we have

1 1 1
1 0 0 1

1 0 1 0 1
1 0 0 1

1 1 1

∈ L[G,S].

Theorem 4.12. The families AHPL and HLprusa are incomparable but not
disjoint.



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 57

Proof. The AHPL language L1 considered in Example 3.3 is shown to be gen-
erated by a HGprusa (see Example 4.11). Hence, L1 ∈ AHPL ∩ HLprusa. For
incomparability, we consider the AHPL language L3 in Example 3.5. It cannot be
generated by any hexagonal Prusa grammar as the rules of the grammar cannot
derive UR, LR, L arrowheads of thickness 2n−1, n > 1, exactly, to get the hexag-
onal pictures of size (2n, 2n, 2n). On the other hand, Consider the language L5,
which consists of palindromic left arrowheads of thickness one over T = {a, b}.

A typical element of L5 is

a
a

b
a
b
a
a

. L5 can be generated by the HGprusa,

G =< N,T, P, S > with N = {S}, T = {a, b},

P =

S → a
S
a
, S →

b
S
b
, S →

a
a
a

/ a
b
a

/ b
a
b

/ b
b
b

 .

This language cannot be derived by any AHPN as from the definition of AHPN, the
effect of applying an arrowhead adjunction rule is either increasing the thickness
or maintaining the same thickness but not on the length of the arrowhead. �

Definition 4.13. The projection by mapping π : Γ → T , (where Γ and T
are two alphabets), of hexagonal picture p is the picture p′ ∈ T ∗∗H such that
p′(i, j, k) = π(p(i, j, k)) for all 1 ≤ i ≤ `, 1 ≤ j ≤ m and 1 ≤ k ≤ n, where (`,m, n)
is the size of the hexagonal picture.

Definition 4.14. Let Γ be a finite alphabet. A hexagonal picture language
L ⊆ Γ∗∗H is called local if there exists a finite set θ of hexagonal tiles over Γ∪{#}
such that L = {p ∈ Γ∗∗H/B2,2,2(p̂) ⊆ θ}.

The family of local hexagonal picture languages will be denoted by HLOC.

Definition 4.15. A hexagonal picture language L ⊆ T ∗∗H is called recogniz-
able if there exists a local hexagonal picture language L′ over an alphabet Γ and
a mapping π : Γ→ T such that L = π(L′).

The family of recognizable hexagonal picture languages will be denoted by
HREC [3].

Definition 4.16. A Hexagonal Tiling System (HTS) [3] is a 4-tuple
< T,Γ, π, θ > where T and Γ are two finite set of symbols, π : Γ→ T is a projection
and θ is a set of hexagonal tiles over the alphabet Γ ∪ {#}. A hexagonal picture
language L ⊆ Γ∗∗H is hexagonal tiling recognizable if there exists a hexagonal
tiling system < T,Γ, π, θ > such that L = π(L(θ)).

The family of hexagonal tiling recognizable languages is denoted by HLhts. It
is easy to see that HREC is exactly HLhts.

Example 4.17. The language L2 of hexagonal pictures over {a} with equal
sides in Example 3.4 is in HREC, since there exist a hexagonal tiling system



58 T. KAMARAJ ET AL.

(T,Γ, θ, π) where T = {a}, Γ = {0, 1} and

θ =





# # # # # #
# 1 0 0 0 0 #

# 0 0 1 0 0 0 #
# 0 1 0 0 1 0 0 #

# 0 0 0 0 0 0 1 0 #
# 0 0 1 0 0 0 0 0 1 #

# 0 0 0 0 0 0 1 0 #
# 0 1 0 0 1 0 0 #

# 0 0 1 0 0 0 #
# 1 0 0 0 0 #

# # # # # #




,

π(1) = π(0) = a.

Theorem 4.18. (i) AHPL and HREC are not disjoint.
(ii) There exists a language in AHPL which is not in HLOC.

(iii) There exists a language in AHPL which is not in HREC.

Proof. The AHPL language L2 considered in Example 3.4 is shown to be in
HREC in Example 4.17 but not in HLOC [3]. This proves the first two parts
of the theorem. For the third part: the language L4 in Example 3.6 cannot be
recognized by any HTS as the interior elements along the x-direction forming the
pattern 2n3n can only be recognized by a context free device. �

5. Conclusion

In this paper we have considered a variant class of Hexagonal Array Token Petri
Net Structure with arrowhead adjunction rules as labels of transitions, along
with a control feature called inhibitor arcs. We compared this model with some
of the expressive hexgonal grammar models: (R)HCFGpure, (R)HFCGexpure,
HGprusa, and also with HREC and HLOC. We have shown that AHPN have a gen-
erative capacity higher than (R)HCFGpure but incomparable and non-disjoint
with other models. The non-empty intersection of the hexagonal picture lan-
guages generated by this model with other models clearly suggests that this model
can generate a wide variety of digitized hexagonal pictures and patterns. The ap-
plication of this model in picture processing tasks and pattern recognition should
be investigated further.

References

[1] H.G. Baker, Petri Net Languages, Computation Structures Group Memo 68, Project MAC,

MIT, Cambridge, Massachusetts, 1972.
[2] M.M. Bersani, A. Frigeri and A. Cherubini, On some classes of 2D languages and their

relations, in: J.K. Aggarwal et al. (eds.), IWCIA 2011, Lecture Notes in Compuer Sceince

6636, Springer, Heidelberg, 2011, 222–234.
[3] K. S. Dersanambika, K. Krithivasan, C. Martin-Vide and K.G. Subramanian, Local and

recognizable hexagonal picture languages, Int. J. Pattern Recogn. 19 (2005), 853–871.
[4] M. Hack, Petri Net languages, Computation Structures Group Memo 124, Project MAC,

MIT, 1975.



ADJUNCT HEXAGONAL ARRAY TOKEN PETRI NETS 59

[5] T. Kamaraj and D.G. Thomas, Regional hexagonal tile rewriting grammars, in: R. P.

Barneva et al. (eds.), IWCIA 2012, Lecture Notes in Computer Science 7655, Springer,
Heidelberg, 2012, 181–195.

[6] T. Kamaraj and D.G. Thomas, Hexagonal Prusa grammar model for context-free hexagonal
picture languages, in: G. S. S. Krishnan et al. (eds.), ICC3 2013, AISC 246, Springer, India,

2014, 305–311.

[7] D. Lalitha, K. Rangarajan and D.G. Thomas, Petri net generating hexagonal arrays,
in: J.K. Aggarwal et al. (eds.), IWCIA 2011, Lecture Notes in Computer Science 6636,

Springer, Heidelberg, 2011, 235–247.

[8] D. Lalitha, K. Rangarajan and D.G. Thomas, Rectangular arrays and Petri nets, in: R. P.
Barneva et al. (eds.), IWCIA 2012, Lecture Notes in Computer Science 7655, Springer,

Heidelberg, 2012, 166–180.

[9] K. Preston Jr., Applications of cellular automata in biomedical image processing, in: E. Haga
(ed.), Computer Techniques in Biomedicine and Medicine, Auerbach, Philadelphia, 1973.

[10] V. S.N. Reddy and R. Narasimhan, Some experiments in scene analysis and scene regener-

ation using COMPAX, Computer Graphics and Image Processing 1 (1972), 386–393.
[11] A. Rosenfeld and J. L. Pfaltz, Distance functions on digital pictures, Pattern Recogn. 1

(1968), 33–61.

[12] G. Siromoney and R. Siromomey, Hexagonal arrays and rectangular blocks, Computer
Graphics and Image Processing 5 (1976), 353–381.

[13] K.G. Subramanian, Hexagonal array grammars, Computer Graphics and Image Processing
10 (1979), 388–394.

[14] K.G. Subramanian, M. Geethalakshmi, A.K. Nagar, S.K. Lee, Two-dimensional picture

grammar models, in: Proceedings of the 2nd European Modelling Symposium, EMS 2008,
IEEE, 2008, 263–267.

[15] K.G. Subramanian, Rosihan M. Ali, M. Geethalakshmi, A.K. Nagar, Pure 2D picture

grammars and languages, Discrete Appl. Math. 157 (2009), 3401–3411.
[16] D.G. Thomas, F. Sweety and T. Kalyani, Results on hexagonal tile rewriting grammars,

in: G. Bebis et al. (Eds.), International Symposium on Visual Computing, Part II, Lecture

Notes in Computer Science 5359, Springer-Verlag, Berlin, Heidelberg, 2008, 945–952.

Thangasamy Kamaraj, Department of Mathematics, Sathyabama University, Chennai – 600
119, India

e-mail : kamaraj mx@yahoo.co.in

Doraiswamy Lalitha, Department of Mathematics, Sathyabama University, Chennai - 600 119,

India
e-mail : lalkrish 24@yahoo.co.in

Durairaj Gnanaraj Thomas, Department of Mathematics, Madras Christian College, Tam-

baram, Chennai – 600 059, India
e-mail : dgthomasmcc@yahoo.com

Robinson Thamburaj, Department of Mathematics, Madras Christian College, Tambaram,
Chennai – 600 059, India

e-mail : robin.mcc@gmail.com

Atulya K. Nagar, Department of Mathematics and Computer Science, Liverpool Hope Uni-
versity, Hope Park, Liverpool L16 9JD, UK

e-mail : nagara@hope.ac.uk




