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OPTIMAL TREATMENT STRATEGIES FOR

MUSCULOSKELETAL DISEASES

KJETIL K. HAUGEN

Abstract. This paper presents a model which aims to find an optimal treatment time
for patients with musculoskeletal diseases. The stochastic dynamic programming

model presented is based on minimizing expected costs given a stochastic processes
for cure with and without treatment as well as costs for treatment and reduced

quality of life as a consequence of the disease.

The main results derived in the paper include explicit conditions for an interior
optimal solution and a simple and intuitive approximate solution.

Even though the presented model is specifically aimed at musculoskeletal dis-

eases, the model’s generality should make it applicable for a wide range of disease
treatment strategies.

1. Introduction

1.1. Health care expenditures

The recent years have shown an explosive rise in expenditures on health care.
During the period from 1965 to 1986, the overall U.S. expenditures on health care
rose from 5.9 % to 10.8 % of GNP [9]. The reasons for such a development are
not very hard to understand. Today, expensive and advanced operations such as
bypass operations and heart transplants are performed routinely – unthinkable
only a few years ago.

In other western economies such as the Norwegian, where health care is largely
viewed as a public good, free of charge for the public, one would expect even
more dramatic cost changes. This as a result of both the recent improvements in
medical technology but also as a result of another important effect – the general
demographic trend of ageing population.

Surely, as Figure 1 indicates, The ministry of Health and Social Affairs (SHD)
shows a substantial position in Norwegian economy with it’s share of expenditures
of 34.4%1.

As a result of the development described above and a clear notion of a fore-
seeable future with growing problems of such a kind, SHD has initiated various
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Figure 1. Expenditure share in 1996 for various Norwegian Ministries.

research projects with efficiency improvements in the health sector as the typi-
cal objective. This paper is written as a result of such a project and deals with
a certain disease category – musculoskeletal diseases.

1.2. Musculoskeletal diseases

The diseases within the category musculoskeletal diseases are normally defined
as all diseases and suffering within the human muscular and skeleton system.
The typical diseases within this category are Repetitive Strain Injuries (RSI) and
Rheumatic diseases.

In Norway, a large share of expenditures within the health care system may
be addressed to this category. According to a white paper by the Norwegian
Parliament [6], 46% of long time and 20% of short time sickness absence are
caused by musculoskeletal diseases.

As sickness absence constitutes a large share of total costs2 within the sector, it
seems sensible to attack this category in order to obtain cost reduction measures.

1.3. Modelling aspects of musculoskeletal diseases

Musculoskeletal diseases have some characteristics which make them special. Ob-
viously, for almost all diseases the causality between treatment and disease pro-
gression may be uncertain. That is, it may be hard to predict if a treatment will
cure the disease and if it does, when. However, musculoskeletal diseases seem –
from a medical point of view – to be harder both to diagnose correctly and cure
than most other disease categories.

2According to [6] and other sources [3, 8], a reasonable estimate on costs related to muscu-
loskeletal diseases amounts to 20 bill. NOK or more than 3 bill. US$.
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There may be distinct medical reasons for this, but other important explana-
tions may exist. The medical fact that such diseases are hard to diagnose and cure
may influence people to “choose” such diseases as substitutes for other problems.
High age combined with today’s not very “elderly-friendly” labour market and
the possibility of obtaining reasonable pensions may lead certain people to choose
a diagnosis instead of unemployment.

Some evidence supporting such a hypothesis exists. A public program referred
to as “social insurance and rehabilitation program” [7] reports that in various
projects, with the objective of bringing people back from social security and into
the labour market, the clients did not take much interest in participation. They
report that in certain projects, more than 60% of the clients refused to participate.

This evidence does of course not necessarily mean that a significant share of
people diagnosed as patients with musculoskeletal diseases are trying to “cheat”
the system. However, a hypothesis of the type described above is not weakened
by such findings.

Anyway, the reason for bringing such socio-economic arguments into this study,
is to justify some special model considerations used later on – namely the exis-
tence of a possibility of being cured from a musculoskeletal disease without treat-
ment. Obviously, it is possible to become cured from almost any disease without
treatment. Presumably, stories of miraculous treatment from much more serious
diseases than those depicted here are known to the reader. Hence, it should not
be hard to accept the existence of a probability of “self-treatment” for almost
any disease. However, the reasoning above is introduced in order to argue for the
fact that the probability of recovering from musculoskeletal diseases untreated,
not only exists, but it may in some instances be of a magnitude not much smaller
than the probability of recovering from the disease with treatment. Given the
existence of people who have chosen the diagnose without being ill, the probabil-
ity of recovering without treatment may even exceed the probability of recovering
with treatment. It is plausible to imagine that a treatment program introduced
to a person who actually knows that he does not have the disease (and wants to
stay “ill”) may prove to be more inefficient than leaving the person alone.

2. The model

Due to the large costs involved with treatment of patients with musculoskeletal
diseases in Norway, and the above discussed hypothesis of possible “self-cure”; the
following questions regarding today’s treatment strategy were formulated:

• Does today’s treatment strategy involve treatment of the correct patients?
• Given that a patient is to be treated, is the timing correct?

The first question implies that certain patients may as well recover from their
“illness” without treatment. Obviously, a lack of treatment for such patients imply
cost efficiency. The second question is essentially just a more detailed version of
the first one; saying that some persons may benefit from being treated earlier than
today’s schedule.

To sum up: We may believe in the following trade-off situation. Introducing an
earlier time of treatment may lead to reduced costs involved with an effective cure
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or rehabilitation. On the other hand, treating patients who get cured by themselves
leads to inefficient use of treatment costs. The model formulated below balances
such a trade-off.

2.1. Basic assumptions

The model described below may be summed up as follows: The model aims to
find an optimal time for treatment of patients with a musculoskeletal disease. The
optimal timing decision is based on a finite time horizon, a set of conditional
probabilities for cure with or without treatment, a treatment cost structure and
a disease cost structure. The model minimizes expected costs.

2.2. Symbols

The following symbols are used in the model:

T : Time horizon
t : Time period subscript, t ∈ {1, 2 . . . , T}
pt : Probability of being cured in period t after treatment in period t− 1
qt : Probability of being cured in period t without treatment in period t− 1
ct : Treatment cost in time period t
kt : The cost incurred during a time period with illness

As the symbols defined above show, the necessary data to the model consists of
two stochastic processes (the vectors p1, . . . , pT and q1, . . . , qT ) and two cost vec-
tors c1, . . . , cT and k1, . . . , kT . Note that this definition implicitly introduces some
significant assumptions – state independence for instance. However, a discussion
on these topics will be skipped for now3.

The content of the two probability vectors should be fairly comprehensible,
but the two cost vectors might require some more discussion. The treatment costs
(c1, . . . , cT ), are meant to reflect the actual costs of the treatment. In Norway, with
a small private health-market, they may be hard to estimate, but they should be
composed of the costs associated with usage of medical personnel and infrastruc-
ture involved in the treatment. The other cost component (k1, . . . , kT ), may be
harder to imagine. The basic point is the assumption of a cost associated with stay-
ing ill. This cost may be measured at an individual level including the mental and
physical strain resulting from the disease and lost earnings as a result of absence
on sick leave. In such a case, the model should be viewed as an individual deci-
sion model. Alternatively, one might try to measure this cost in a socio-economic
frame. Then, components such as pension effects, effects on governmental budgets
and so on should be added.

Surely, such a cost is hard to measure in any environment – socio-economic or
decision theoretic.

2.3. Decision tree

The decision tree in Figure 2 shows the main elements of the decision model.

3Some further remarks on these assumptions will be given in Subsection 2.5.
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Figure 2. The decision problem depicted by a decision tree.

In a given time period t, a decision on whether to treat or not will have to be
made. After this decision, “nature” decides the outcome for the patient – cured
or not cured. Note that the patient, as discussed above, may get cured without
treatment. Given treatment in period t, the probability of being cured is pt, while
the probability of being cured without treatment is qt. The cost ct accrues in
period t if the patient is treated. No treatment implies no cost – 0 in the decision
tree. If the patient leaves period t not cured, the cost kt accrues. Note that
if a person has been treated, it is assumed that another treatment is illegal in
this model. The reason for this assumption is discussed in Subsection 2.5. (This
assumption is depicted with grounding symbols in the decision tree.) As no other
costs accrues when a person is cured, it is unnecessary to expand the decision tree
after this instance.)

2.4. Similar modelling in the literature

The basic source for similar modelling seems to be the two Israeli scientists –
Gafni and Mehrez [2, 4, 5], who, in a series of articles in the mid eighties, treated
the problem of finding the optimal timing of a surgery for a non-fatal disease.

Their work was inspired by micro-economic life-insurance modelling by Yaari
[13] and Barro et al. [1] in the seventies. The analogy between optimal treatment
timing and life insurance may need some more explanation. The basic problem
for the individual involved with accepting or rejecting a life insurance policy may
be that of timing. Should the policy be accepted today or should the acceptance
be postponed. Surely, the event of death is not assumed influence able, but the
consequence is. Hence, an individual faces the decision of rejecting the policy
now, yielding one set of consequences if death occurs or accepting it (and the
policy costs) but different (and better) consequences if death occurs.

Gafni and Mehrez are using a maximal expected utility framework in their mod-
els. They assume that an individual is facing the decision of undertaking surgery
which may “cure” a disease (or not). They assume the existence of an underlying
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probability mechanism for the individuals probability density function of surviving
t more years without surgery and a corresponding density given surgery. (These
two mechanisms correspond to qt and pt in 2.2.) The surgery is assumed costless,
hence the basic trade off is that of choosing between continuing life with reduced
life quality or gambling on a successful surgery.

One of the basic results of Gafni and Mehrez is the existence of a “bang-bang”
solution under fairly general assumptions. The term “bang-bang” solution refers
to a “now or never” optimal strategy. That is, an interior optimal solution does
not exist and the surgery is either conducted immediately or never.

They also discuss which assumptions need to be altered in order to obtain an
interior optimal solution, but they fail to give some direct mathematical results
needed to find the solution. Section 3 will show similar characteristics in this
model but also some stronger results on how to obtain interior optimal solutions.

2.5. Some alternative modelling considerations

As discussed in Subsection 2.2, the model briefly outlined by Figure 2 implicitly
makes some important assumptions. This section will discuss these assumptions
in a greater depth.

2.5.1. State dependency. According to Figure 2, the stochastic mechanisms
and cost structures are assumed independent of earlier actions. That is, the prob-
ability of being cured without treatment does not depend on any earlier attempts
to cure the disease. Surely, this may be questionable. Likewise, the cost asso-
ciated with staying ill (kt) is assumed unaffected by a previous attempt to cure
the disease. It seems obvious that these elements may be affected by unsuccess-
ful treatments. Note, however, that the modelling structure does not block the
possibility of building such mechanisms into the model. The results obtained in
Section 3 may, however, be severely affected.

2.5.2. Time horizon – one treatment. Another important assumption is that
of allowing only one attempt to treat the disease. This is obviously not even
close to a practical situation4, but the main point in this model has been to look
at a treatment timing problem. That is, it is assumed that the time horizon
is sufficiently short to assume that it is impossible (or impractical) to impose
several treatments. Again, the modelling frame (so far) does not really block this
possibility, but again, the ease of obtaining solutions may be severely affected.

2.5.3. Number of possible decisions – outcomes. Another obvious assump-
tion is that of the number of outcomes and treatment strategies. The decision
variables are assumed to be binary. That is, a treatment is either initiated or not.
It is surely possible to choose among a broader set of alternatives. Similarly, it
is clear that the outcomes (CURED, NOT CURED) may be modelled in a more
detailed way. These situations may be handled (with some added complexity)
with the means of Section 3.

4It is not common try only one treatment on a disease if the initial treatment fails.
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3. Some results

This section will present some results.

3.1. “Bang-bang” solutions

First, the existence of “bang-bang” solutions is examined. Assume the following:

pt = p, qt = q, ct = c, kt = k∀t ∈ {1, . . . , T}.
Given this assumption, the decision problem may be depicted by the decision tree
in Figure 3.
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Figure 3. Decision tree with no time dependence in parameters.

Doing a backward recursion on this tree, it is easy to realize that period T
involves two possibilities. Either

c + (1− p)k ≤ (1− q)k (3.1)

or
c + (1− p)k > (1− q)k. (3.2)

Let us assume that treatment is optimal in period T . That is

min {c + (1− p)k, (1− q)k} = c + (1− p)k.

In period T − 1, we obtain the following optimization problem:

min {c + (1− p)[k + (1− q)k], (1− q)[k + c + (1− p)k]}
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= (1− p)(1− q)k + min {c + (1− p)k, (1− q)k + (1− q)c} . (3.3)

Comparing Equations (3.1) and (3.3) it is straightforward to realize that treatment
is optimal in period T − 1 as well. Continuing this type of argument leads to the
following decision problem in period j (counted backwards)

min

{
c + (1− p)k

(
j∑

i=0

(1− q)i

)
, (1− q)

[
k + c + (1− p)k

(
j−1∑
i=0

(1− q)i

)]
.

}
(3.4)

Equation (3.4) can be written as

(1− p)k

(
j∑

i=1

(1− q)i

)
+ min {c + (1− p)k, (1− q)k + (1− q)c} . (3.5)

If Equations (3.5) and (3.3) are compared, it is easy to conclude the following.
Given that treatment is optimal in period T , it is also optimal in any earlier
period j including period 1. Hence, this situation implies immediate treatment as
the optimal strategy. The other possible alternative in period T , Equation (3.2)
may either be expanded similarly or the following argument may be applied.

The optimal action in period T is now not to treat. In period T − 1, two
possibilities exist; either treatment is conducted or not. If treatment is the optimal
decision, this will (by the reasoning above) again be the optimal decision in period
T − 2 and so on and the result from Equation (3.5) can again be applied yielding
that immediate treatment is the optimal action. Alternatively, if treatment is not
the optimal action in period T − 1, we can repeat the same argument again in
period T − 2 etc. If we end up (in period 1) with no treatment as the optimal
action, the optimal treatment time is never.

The conclusion is: If p, q, c, k are assumed constant, the basic result of Gafni
and Mehrez – a “bang-bang” solution structure holds in this model as well.

3.2. Existence of an interior optimum

Following Gafni and Mehrez, it is now a straightforward matter to identify further
(and more general situations) for “bang-bang” solutions. This does, however, not
give much of an insight into the problem. Hence, the last part of the paper is
devoted to the more interesting case with existence of interior optima.

Assume that the treatment probabilities are increasing over time5. That is

p1 < p2 < . . . < pT . (3.6)

Given this assumption, the decision problem in period T (given that treatment is
optimal) may be written:

min {c + (1− pT )k, (1− q)k} = c + (1− pT )k. (3.7)

In period T − 1 the decision problem becomes:

min {c + (1− pT−1) [k + (1− q)k] , (1− q) [k + c + (1− pT )k]} . (3.8)

5Such a situation may indicate developing medical technology and methods, and seems like
a very reasonable assumption.
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Equation (3.8) is now expanded in more detail. First, the left part within the
minimization:

c + (1− pT−1)k + (1− pT−1)(1− q)k (3.9)

and then the right part:

(1− q)k + (1− q)c + (1− pT )(1− q)k. (3.10)

It is readily observed that the expression c + (1 − pT−1)k in (3.9) is increasing
compared to the expression c + (1− pT )k in (3.7). At the same time (using (3.6)
again)

(1− pT−1)(1− q)k > (1− pT )(1− q)k (3.11)

while the last part of (3.10) ((1− q)k + (1− q)c) is unchanged. As a consequence,
the left part of the minimization is increasing more than the right part within
the minimization – the treatment strategy is gradually becoming more and more
costly compared to the not treatment strategy6. Sooner or later, provided the time
horizon is long enough, the no treatment strategy will become less expensive and
the interior optimal solution will occur at this point in time. Using the reasoning
behind Equations (3.4) and (3.5), the optimal time of treatment t∗ may be found
by solving the following equation:

c+(1−pT−t∗)k

{
t∗∑
i=1

(1− q)i

}
= (1−q)

(
k + c + (1− pT−t∗+1)k

{
t∗−1∑
i=1

(1− q)i

})
.

(3.12)
This Equation (3.12) can easily be solved numerically. Alternatively, if pt can be
expressed with a direct functional representation, we may find a direct analytic
solution to the problem by applying the formula for the sum of a finite geometric
series.

3.3. An approximate solution

None of the above mentioned strategies give a direct insight into how the solution
behaves. As a consequence, an approximation will be presented which is intuitive
and simple to calculate.

Assume that pt does not change much over time. That is

pi ≈ pi+1∀i ∈ {1, . . . , T}. (3.13)

Returning to Equation (3.11) and utilizing Assumption (3.13), it is easy to see that
the left and right side of (3.11) will become reasonably equal. As a consequence,
the minimization (3.8) may be approximated by:

min {c + (1− pT−1)k, (1− q)k + (1− q)c} .
A straightforward inductive argument then leads to the following approximate
equation to determine the optimal treatment time t∗.

c + (1− pT−t∗) k ≈ (1− q)k + (1− q)c. (3.14)

Solving (3.14) yields:

pT−t∗ = q
(

1 +
c

k

)
. (3.15)

6Note that this arguing is done backwards.
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It is straightforward to justify the intuition in Equation (3.15). If the probability
of being cured without treatment q increases, pT−t∗ increases and the optimal
treatment time is postponed. Similarly, if the treatment cost c increases, the same
effect occurs. However, if the cost of staying ill k increases, pT−t∗ decreases and
the optimal treatment time decreases.

3.4. An example

A simple example is formulated in order to show how Equation (3.15) may be
used. Data for the example is given in Table 1.

Table 1. An example of applying the approximate solution.

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pt .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95
q .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
k 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Equation (3.15) gives:

pT−t∗ = 0.8

(
1 +

0

1

)
= 0.8.

Hence, the approximate optimal treatment time for this example is period 3 as
p12 = 0.8 and 15 − t∗ = 12 ⇒ t∗ = 3 The approximation may be controlled as pt
may be written (see Table 1):

pt = 0.20 + 0.05t. (3.16)

That is, a functional representation for pt is available and Equation (3.12) may

be applied directly. Inserting
∑t∗

i=1(1− q)i = 1−q
q

[
1− (1− q)t

∗]
, Equation (3.16)

and the data from Table 1 into Equation (3.12) we obtain

1

4
(0.05 + 0.05t∗)

[
1− 0.2t

∗
]

= 0.2

(
1 +

[
1

4
0.05t∗

(
1− 0.2t

∗−1
)])

. (3.17)

The left hand minus the right hand side of (3.17) is plotted in the same diagram
in Figure 4.

As Figure 4 shows, Equation (3.17) has a solution slightly above 12. As Equa-
tion (3.17) is a continuous representation of a discrete problem, this value must
be rounded down yielding 12 as the correct optimal treatment time7. Surely, the
difference from the approximate t∗ of 3 is striking. However, this result is not very
surprising, as our underlying assumption in Equation (3.13) shows limited corre-
spondence with the example data from Table 1. The pt’s there do indeed change

7This value may of course be controlled by actually doing direct calculations on the decision
tree.
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Figure 4. Optimal treatment time in the example.

a great deal – in fact a 20% increase between all periods. Hence, our example is
not meant to reflect reality8, only to show how the two methods work.

4. Conclusions

This paper has demonstrated the existence of both “bang-bang” solutions and
interior optima in a model with the aim of obtaining an optimal time of treat-
ment for patients with musculoskeletal diseases. The modelling framework differs
somewhat from similar work in the literature, but similarities exist.

The basic findings in this work are the actual conditions for the existence of an
optimal treatment time as well as a simple and intuitive approximate solution.

The possibility of applying such a model in practice has not been judged, but, as
SHD has granted money for the task, one would at least assume that the problem
is interesting. Implementing a patient treatment strategy different from todays’
is of course difficult. It can, for instance, be assumed that few doctors would
welcome a model telling them which patients to treat and when. Additionally,
if such a model is to be applied in a socio-economic framework, the problem of
estimating the costs involved with an individual staying ill within a period may
be difficult. Some relatively recent research supporting such an estimation process
may, however, be helpful [11,12].

8Note also the q-value in Table 1 which indicates that getting rid of the disease without
treatment is much more probable than through treatment – hardly a very realistic assumption.
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