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ON THE RELATIVE CLASS NUMBER

OF SPECIAL CYCLOTOMIC FIELDS

TAKASHI AGOH

Dedicated to the memory of Tomihisa Oku

Abstract. Let p be an odd prime, ζp be a primitive pth root of unity and h−p be the

relative class number of the pth cyclotomic field Q(ζp) over the rationals Q defined

by ζp. The main purpose of this paper is to discuss arithmetic properties of factors

of h−p for an odd prime p of the form p = 4q + 1 with q a prime.

1. Introduction

Let p be an odd prime, ζp a primitive pth root of unity, Kp = Q(ζp) the cyclotomic
field over the rationals Q defined ζp, hp the class number of Kp and h+p the real

class number of Kp, i.e. the class number of the maximal real subfield K+
p =

Q(ζp+ ζ−1p ) ⊂ Kp. The relative class number h−p = hp/h
+
p of Kp as well as h+p has

been the subject of considerable investigations in connection with the ideal class
group of Kp and many kinds of class number formulas have been devised from
various viewpoints.

Out of numerous expressions of h−p , we first extract the following classical for-
mula established by Kummer in 1851:

h−p =
(−1)(p−1)/2

(2p)(p−3)/2

p−1∏
j=1
j:odd

f(ζjp−1), (1.1)

where f(x) =
∑p−2
k=0 gkx

k, g is a primitive root (mod p) and gk is the least positive
residue of gk modulo p. Next, we pick up the well-known

h−p = 2p
∏
χ∈Z−

(
−1

2
B1,χ

)
, (1.2)

where Z− is the set of all odd Dirichlet characters modulo p and B1,χ is the

generalized Bernoulli number attached to χ, i.e. B1,χ = (1/p)
∑p−1
a=1 aχ(a).

Based on these formulas, we are able to deduce many important arithmetic
properties of h−p (see, e.g., Ribenboim [14] and Washington [16]).
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Concerning prime factors of h−p and h+p and their properties, very little is known.
By elaborately analysing (1.1), Lehmer [7] obtained the following factorization of
h−p into rational integers:

h−p =
∏

ed=p−1
d :odd

hp(e), (1.3)

where the product is taken over all integers e > 0 such that ed = p−1 with d odd.
The factor hp(e) is the so-called relative class number of order e. We can consult
more details including an explicit formula of hp(e) in [7].

It is well-known by Kummer’s result that p | hp ⇔ p | h−p , 2 | hp ⇔ 2 | h−p ,

p | h+p ⇒ p | h−p and 2 | h+p ⇒ 2 | h−p . Metsänkylä [11] showed that if p is a prime

of the form p = 2q + 1 with q an odd prime, then q - h−p . Concerning the parity

of h−p , Estes [4] proved that if p = 2q + 1 and 2 is inert in K+
q , then 2 - h−p . We

can find a new proof of this result in [12] based on the formula (1.2). See also the
proof by Stevenhagen [15]. The parity of h+p was studied by Davis [3] and it was
verified that if p = 2q + 1 (both p and q are odd primes) and 2 is a primitive root
of q, then 2 - h+p . On the one hand, Metsänkylä [13] discussed the case p = 4q+ 1
(q a prime) and proved a similar result to the Davis by making use of the 2-adic
class number formula.

In this paper, we focus our attention on the relative class number h−p of Kp for
an odd prime p = 4q + 1 with q a prime and discuss arithmetic properties of the
factors H1 and H2 of h−p given in the following theorem.

Theorem 1.1. Let p be an odd prime of the form p = 4q + 1 with q a prime.
Then h−p is factored as h−p = H1 ·H2, where H1 and H2 can be expressed by using
integer pairs (C,D) and (S, T ) as, respectively,

H1 =
C2 +D2

2
and H2 =

S2 + (−1)(q−1)/2qT 2

p
. (1.4)

Here the integers C,D, S and T are determined uniquely up to the sign.

We note that H1 and H2 in (1.4) are corresponding to hp(4) (with d = q) and
hp(4q) (with d = 1), respectively, in Lehmer’s factorization (1.3).

2. Proof of Theorem 1.1

Throughout this paper, we denote by ζn a primitive nth root of unity for n ≥ 1, Zp
the ring of p-adic integers, Qp the field of p-adic numbers, OK the ring of integers
in an algebraic number field K over Q and NK/F the norm in an extension K/F .

In this Section we first give the proof of Theorem 1.1 based on (1.2) and later
we introduce methods how to concretely find the pairs (C,D), (S, T ) in (1.4) by
making use of (1.1).

Proof. If we sort the odd characters χ according to their orders, then the num-
bers βχ = − 1

2B1,χ attached to χ ∈ Z− with e = ord(χ) = (p− 1)/d for a positive
odd integer d dividing p− 1 form a Galois orbit in Ke. Therefore, letting α be an
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element in this orbit, we can write

He =
∏

ord(χ)=e

βχ = NKe/Q(α) ∈ Q,

and hence (1.2) becomes

h−p = 2p
∏

ed=p−1
d: odd

He. (2.1)

This brings us Lehmer’s factorization (1.3) if we perceive that the numbers βχ =

−(1/2p)
∑p−1
a=1 aχ(a) are elements in OKp−1

except for the following two cases.

(i) When ord(χ) = e = 2t is the highest power of 2 dividing p−1, we know that
βχ is not 2-integral.

(ii) When ord(χ) = e = p− 1 and χ is the inverse of the Teichmüller character
ω of order p−1 after embedding Kp−1 in a fixed algebraic closure Qp of Qp, we see
βχ ∈ (1/p)Zp. Indeed, in this case we have βω−1 = βωp−2 ≡ −(p−1)/2p (mod Zp),
which corresponds to the von Staudt-Clausen theorem on Bernoulli numbers.

Therefore, taking 2H2t and pHp−1 together in (2.1), we have an actual factor-
ization into rational integers as in (1.3). Now assume that p is an odd prime of
the form p = 4q+ 1 with q a prime. Then we have e = 2t = 4 and e = p− 1 = 4q,
and hence (2.1) can be written as h−p = (2H4)(pH4q).

For the case e = 4, we easily see that the number H1 = 2H4 can be written as,
using a Gaussian integer C +Di ∈ OQ(i) = Z[i],

H1 = 2
∏

ord(χ)=4

βχ =
1

2
NQ(i)/Q(2B1,χ) =

1

2
NQ(i)/Q(C +Di) =

C2 +D2

2
.

For the case e = 4q, the number H2 = pH4q is equal to p times the norm of an
algebraic number which is integral in K4q outside a single of the ϕ(4q) = 2(q − 1)
primes over p of valuation −1, where ϕ is Euler’s totient function. Therefore, it
is also p times the norm of an algebraic integer which is integral outside a single
of the 2 primes over p of valuation −1 in any quadratic subfield of K4q, for which

we may choose F = Q(
√

(−1)κq) with κ = (q + 1)/2. Writing H2 as 1/p times
the norm of p times that quadratic number which is integral in F , we arrive at the
expression of H2 by means of a pair (S, T ) ∈ Z2 as follows:

H2 =
1

p
NF/Q

(
S +

√
(−1)κqT

)
=
S2 + (−1)(q−1)/2qT 2

p
.

This completes the proof of Theorem 1.1. �

Above proof based on (1.2) tells that there exist pairs (C,D) and (S, T ) of
integers as stated in (1.4), however it does not show the uniqueness of these pairs.
Further, an algorithm how to concretely deduce them does not come in sight.
These issues will be resolved when we apply Kummer’s formula (1.1). We do not
give details because it is rather lengthy and troublesome, but we think that it is
better to introduce below only the process how to find explicitly these pairs by
making use of (1.1).
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As defined in Section 1, let f(x) =
∑p−2
k=0 gkx

k, where gk ≡ gk (mod p), 1 ≤
gk ≤ p− 1, for a primitive root g (mod p). Then we have f(x) =

∑4q
k=1 kx

ind(k) if

p = 4q+1. Since {a ∈ Z | 1 ≤ a < 4q, (a, 4q) = 1} =
{

2k+1 | 0 ≤ k < 2q}\{q, 3q},

NK4q/Q(f(ζ4q)) =

4q−1∏
a=1

(a,4q)=1

f(ζa4q).

As easily seen, ζ4q = iζq, ζ
q
4q = iq = (−1)(q−1)/2i, ζ3q4q = −iq = (−1)(q+1)/2i and

{iq, i3q} = {i,−i} for i =
√
−1. Since K4 = Q(i), we obtain from (1.1)

h−p =
1

(2p)2q−1

2q−1∏
k=0

f((iζq)
2k+1)

=
1

(2p)2q−1
{
NK4/Q(f(i)) · NK4q/Q(f(iζq))

}
.

Here we write h−p as h−p = H1 ·H2, where

H1 =
1

2p2
NK4/Q(f(i)) and H2 =

1

22(q−1)p2q−3
NK4q/Q(f(iζq)). (2.2)

For an appropriate function ϑ and a = 0, 1, 2, 3, let write for simplification∑
k

(a)

ϑ(k) =

p−1∑
k=1

ind(k)≡a (mod 4)

ϑ(k).

First we put Ua =
∑ (a)

k k. Since ind(k) ≡ a (mod 4) deduces ind(p − k) =

ind(−k) ≡ a+ 2 (mod 4), we have Ua+2 =
∑ (a+2)

k k =
∑
k

(a)

(p− k) = qp−Ua for
a = 0, 1. Also since

f(i) =

p−2∑
k=0

gki
k =

4q∑
k=1

kiind(k) =

3∑
a=0

∑
k

(a)

kiind(k)

= (U0 − U2) + i (U1 − U3) = (2U0 − pq) + i (2U1 − pq) ,

we get from (2.2)

H1 =
1

2p2
f(i)f(−i) =

1

2p2
{

(2U0 − pq)2 + (2U1 − pq)2
}

=
1

2

{
(2U0/p− q)2 + (2U1/p− q)2

}
.

(2.3)

Noting that Ua ≡
∑ (a)

k gind(k) ≡
∑q−1
k=0 g

a+4k ≡ ga(gp−1−1)/(g4−1) ≡ 0 (mod p)
by Fermat’s little theorem, if we set C = |2U0/p − q| and D = |2U1/p − q|, then
(2.3) leads to H1 = (C2 +D2)/2 with (C,D) ∈ Z2 as indicated in (1.4).

Next put Va =
∑(a)

k kζ
ind(k)
q for a = 0, 1, 2, 3. Then it follows that for a = 0, 1

Va+2 =
∑
k

(a+2)

(p− k)ζ ind(p−k)q =
∑
k

(a)

(p− k)ζ ind(−k)q

=
∑
k

(a)

(p− k)ζ ind(k)q = p
∑
k

(a)

ζ ind(k)q −
∑
k

(a)

kζ ind(k)q = −Va.
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Thus we have

f(iζq) =

4q∑
k=1

k(iζq)
ind(k) =

3∑
a=0

∑
k

(a)

k(iζq)
ind(k)

= (V0 − V2) + i (V1 − V3) = 2 (V0 + iV1) .

(2.4)

Noting the fact K4q = Kq(i), if we calculate the norm of f(iζq) in K4q/Q, then

NK4q/Q(f(iζq)) =22(q−1)NK4q/Q (V0 + iV1)

=22(q−1)NKq/Q
(
NKq(i)/Kq

(V0 + iV1)
)

=22(q−1)NKq/Q
(
V 2
0 + V 2

1

)
.

Putting afresh α1 = V0 and β1 = V1, we define αj+1 = Γ j(α1) and βj+1 = Γ j(β1)
(j = 0, 1, ..., q−2), where Γ is a generator of Gal (Kq/Q). Consider the recurrence
sequences {Xn}n≥1 and {Yn}n≥1 defined by X1 = α1, Y1 = β1 and for k ≥ 1{

Xk+1 =αk+1Xk + βk+1Yk,

Yk+1 =βk+1Xk − αk+1Yk.
(2.5)

Then we see Xq−1 = Γj(Xq−1) and Yq−1 = (−1)jΓj(Yq−1) for any j ≥ 0, which

show Xq−1 ∈ Z and Yq−1 ∈ OF , where F = Q(
√

(−1)ρq) ⊂ Kq and ρ = (q− 1)/2.

When we represent Yq−1 using the integral basis {1, 12 (1+
√

(−1)ρq)} of OF , there
exist uniquely uq, vq ∈ Z such that

Yq−1 = uq + vq
1 +

√
(−1)ρq

2
.

We do not mention details, but it can be shown that Yq−1 = −uq
√

(−1)ρq based

on the fact vq = −2uq. Putting anew X = Xq−1 and Y = uq = −Yq−1/
√

(−1)ρq,
we see that X,Y ∈ Z and both are divisible by pq−2. Consequently, letting S =
|X/pq−2| and T = |Y/pq−2|, we realize the following expression of H2 as desired:

H2 =
1

22(q−1)p2q−3
NK4q/Q(f(iζq)) =

1

p2q−3
NKq/Q(V 2

0 + V 2
1 )

=
1

p2q−3

q−2∏
j=0

Γ j(α2
1 + β2

1) =
1

p2q−3

q−1∏
k=1

(α2
k + β2

k)

=
X2
q−1 + Y 2

q−1

p2q−3
=
X2 + (−1)(q−1)/2qY 2

p2q−3

=
S2 + (−1)(q−1)/2qT 2

p
.

(2.6)

3. Arithmetic properties of H1 and H2

In this Section, we discuss arithmetic properties of the factors H1 and H2 of h−p
stated in Theorem 1.1.

First, we shall prove the following

Proposition 3.1. Let p = 4q + 1 be an odd prime with q a prime, H1, H2 be

as in Theorem 1.1 and
(
·
q

)
be the Legendre symbol. Then we have
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(i) H1 ≡ 1 (mod 4).

(ii) If H2 is odd, then H2 ≡ 1 (mod 4).

(iii) If q - H2, then
(
H2

q

)
= 1.

(iv) If l is an odd prime with l 6= q and l ‖ H2, then
(
l
q

)
= (−1)(l−1)/2.

Proof. (i) Recall the expression H1 = (C2 +D2)/2 from Section 2. Since both
C = |2U0/p− q| and D = |2U1/p− q| are odd, we see C2 +D2 ≡ 2 (mod 8) and
hence H1 ≡ 1 (mod 4).

(ii) From the assumption 2 - H2 and the expression of H2 in (2.6), S and T must
have different parities. If S is odd and T is even, then H2 ≡ S2 ≡ 1 (mod 4). On
the one hand, if S is even and T is odd, then H2 ≡ (−1)(q−1)/2qT 2 ≡ 1 (mod 4),
because it always holds that (−1)(q−1)/2q ≡ 1 (mod 4) for an odd prime q.

(iii) Since p ≡ 1 (mod q) and pH2 = S2 + (−1)(q−1)/2qT 2, we have H2 ≡ S2

(mod q) and hence
(
H2

q

)
= 1.

(iv) If l = p, then
(
l
q

)
=
(

4q+1
q

)
= 1, which proves the assertion. On the other

hand, if l 6= p, q, then, by the reciprocity and the first complementary laws for the
Legendre symbol, it follows that, letting κ = (q + 1)/2,

l is inert in Q(
√

(−1)κq)⇐⇒
(

(−1)κq

l

)
= −1

⇐⇒
(
l

q

)
= (−1)(l+1)/2.

(3.1)

If
(
l
q

)
6= (−1)(l−1)/2, i.e.

(
l
q

)
= (−1)(l+1)/2, then we know from (3.1) that l is

inert in Q(
√

(−1)κq). However H2 can be written as

H2 =
1

p

(
S +

√
(−1)κqT

)(
S −

√
(−1)κqT

)
,

which implies that if l | H2, then l2 | H2. This is contrary to l ‖ H2. �

Combining (i) and (ii) in Proposition 3.1, we know that if h−p is odd, then

h−p ≡ 1 (mod 4).

Proposition 3.2. Let p = 4q+1 be an odd prime, where q is also a prime with
q ≡ 3 (mod 4). Then we have (i) H1 6≡ 0 (mod q) and (ii) H2 6≡ 0 (mod q), and
hence h−p 6≡ 0 (mod q).

Proof. (i) We shall first show H1 6≡ 0 (mod q) if q ≡ 3 (mod 4). Let Ua be as
in Section 2. Then, since Ua > 0, Ua ≡ 0 (mod p) and Ua + Ua+2 = pq, we know
(Ua, q) = 1 for each i = 0, 1, 2, 3. In fact, if q | Ua, then Ua/pq + Ua+2/pq = 1,
which is impossible because both Ua/pq and Ua+2/pq are positive integers. Recall
now the expression of H1 introduced in Section 2 as a consequence of (1.1):

H1 =
C2 +D2

2
,
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where C = |2U0/p−q| and D = |2U1/p−q|. Since (U0, q) = (U1, q) = 1, one knows
(C, q) = (D, q) = 1. This implies that if H1 ≡ 0 (mod q), then q ≡ 1 (mod 4),
which is contrary to the assumption.

(ii) Next, we shall show H2 6≡ 0 (mod q) if q ≡ 3 (mod 4). Let α1 = V0
and β1 = V1 as defined in Section 2 and put q = (1 − ζq) the prime ideal of
OKq

dividing q. Then we have α1 ≡ U0 (mod q) and β1 ≡ U1 (mod q), because

Ua − Va =
∑ (a)

k k(1 − ζ ind(k)q ) ≡ 0 (mod q) for a = 0, 1. Hence, letting αj+1 =
Γ j(α1) and βj+1 = Γ j(β1) for Γ ∈ Gal (Kq/Q), it follows that for j = 0, 1, ..., q−2

αj+1 ≡ U0 (mod q), βj+1 ≡ U1 (mod q). (3.2)

Here reconsider the sequences {Xn}n≥1 and {Yn}n≥1 defined in (2.5). From
(3.2) we deduce for any k ≥ 1{

X2k−1 ≡ (U2
0 + U2

1 )k−1U0 (mod q),

Y2k−1 ≡ (U2
0 + U2

1 )k−1U1 (mod q),

{
X2k ≡ (U2

0 + U2
1 )k (mod q),

Y2k ≡ 0 (mod q).
(3.3)

Taking account of the facts Xq−1, Y
2
q−1 ∈ Z and (q) = qq−1, we get from (3.3)

Xq−1 ≡ (U2
0 + U2

1 )ρ (mod q), Y 2
q−1 ≡ 0 (mod q), (3.4)

where ρ = (q − 1)/2. As mentioned in Section 2, H2 can be expressed as

H2 =
S2 + (−1)ρqT 2

p
,

where S, T are rational integers given by

S =
∣∣∣Xq−1

pq−2

∣∣∣ and T =

∣∣∣∣ −Yq−1
pq−2

√
(−1)ρq

∣∣∣∣.
If we assume H2 ≡ 0 (mod q) for q ≡ 3 (mod 4), then S ≡ 0 (mod q) since p ≡ 1
(mod q). Therefore, from (3.4) we get Xq−1 ≡ (U2

0 + U2
1 )ρ ≡ 0 (mod q) which

implies U2
0 + U2

1 ≡ 0 (mod q). Also since (U0, q) = (U1, q) = 1, q must satisfy
q ≡ 1 (mod 4), which is however contrary to the assumption.

By (i) and (ii), we conclude that h−p = H1 ·H2 6≡ 0 (mod q) if q ≡ 3 (mod 4).
This completes the proof of Proposition 3.2. �

In above proof, we showed independently H1 6≡ 0 (mod q) and H2 6≡ 0 (mod q)
under the assumption q ≡ 3 (mod 4). However, the second one can be deduced
from the first if we apply more general results on Galois extensions and p-groups
(see [16, Theorem 10.4 (a)]). Indeed, we have only to know and use the fact that
H1 is the relative class number of the subfield with degree 4 of Kp.

It is possible to discuss the p-divisibility of H1 by means of Bernoulli numbers
defined by the power series expansion

x

ex − 1
=

∞∑
n=0

Bn
n!
xn (|x| < 2π).

As easily seen from the von Staudt-Clausen theorem, if p is a prime with p−1 - n,
then Bn ∈ Zp, and if p− 1 | n, then pBn ∈ Zp, more precisely pBn ≡ −1 (mod p).
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Proposition 3.3. Let p = 4q + 1 be an odd prime with q a prime. Then

H1 ≡
1

2
·
B(p+3)/4

(p+ 3)/4
·
B(3p+1)/4

(3p+ 1)/4
(mod p). (3.5)

Proof. Let ω be the Teichmüller character whose order is p − 1. Since βωn ≡
1

n+1Bn+1 (mod p) for a positive odd integer n with p− 1 - n+ 1, we know that if
p = 4q + 1, then

H1 =2H4 = 2(βωqβω3q ) = 2
(
−1

2
B1,ωq

)(
−1

2
B1,ω3q

)
≡1

2
· Bq+1

q + 1
· B3q+1

3q + 1
(mod p),

which completes the proof of (3.5). �

For above proof, we referred to some ideas written in the papers by Carlitz [2]
and Metsänkylä [10]. As a matter of fact, there are many different proofs of (3.5)
although the above one is very short and smart. It is of course possible to prove
it by calculating NK4/Q(f(i)), where f(x) =

∑p−2
k=0 gkx

k as defined in Section 1.
For this purpose, letting si = (ggi − gi+1)/p ∈ Z, we consider the polynomial

s(x) = s0 + s1x+ · · ·+ sp−2x
p−2.

A basic relation between f(x) and s(x) is given by

1

p
(gx− 1)f(x) = xs(x) +

1

p
(xp−1 − 1). (3.6)

As easily shown, if m ≥ 2 is even and p− 1 - m, then we have

1

p
f(gm−1) ≡Bm

m
+

m− 1

gm − 1
qp(g) (mod p),

s(gm−1) ≡g
m − 1

gm−1
· Bm
m

(mod p),

(3.7)

where qp(g) = (gp−1 − 1)/p is the Fermat quotient of p with base g. Indeed, to
deduce (3.7) we prepare the well-known congrunece (see, e.g., Agoh [1])

Bm
m
≡ gm

gm − 1
qp(g)−

p−1∑
i=1

g(m−1)i
[
gi

p

]
(mod p), (3.8)

where [gi/p] is the greatest integer ≤ gi/p. By the logarithmic property of the
Fermat quotient, we have qp(g

n) ≡ nqp(g) (mod p) for any integer n ≥ 0. Also
since

[
gi/p

]
= (gi − gi)/p and gp−1 = g0 = 1, it follows from (3.8) that

Bm
m
≡ gm

gm − 1
qp(g)− 1

p

p−1∑
i=1

gmi +
1

p

p−1∑
i=1

g(m−1)igi

≡ gm

gm − 1
qp(g)− gm

gm − 1
qp(p

m) +
1

p
f(gm−1) + qp(g

m−1)

≡− m− 1

gm − 1
qp(g) +

1

p
f(gm−1) (mod p),
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which shows the first congruence in (3.7). The second one can be shown from the
first by taking x = gm−1 in (3.6).

Now letting θ = ζp−1 for brevity, we get immediately from (3.6)

1

p

(
g − 1

θ

)
f(θ) = s(θ). (3.9)

If we set p = (p, g− θ) (the prime ideal of OKp−1
), then g ≡ θ (mod p) and hence

gn ≡ θn (mod p) for any n ≥ 0. Taking this congruence into account, we obtain
from (3.7) and (3.9) that, since i = θ(p−1)/4 and −i = θ3(p−1)/4,

H1 =
1

2p2
NK4/Q(f(i)) =

1

2p2

(
p2

g2 + 1
NK4/Q(s(i))

)
=

1

2(g2 + 1)
s(i)s(−i) =

1

2(g2 + 1)
s(θ(p−1)/4)s(θ3(p−1)/4)

≡ 1

2(g2 + 1)
s(g(p−1)/4)s(g3(p−1)/4)

≡M ·
B(p+3)/4

(p+ 3)/4
·
B(3p+1)/4

(3p+ 1)/4
(mod p),

where M is given by, since g(p−1)/2 ≡ −1 (mod p),

M =
(g(p+3)/4 − 1)(g(3p+1)/4 − 1)

2(g2 + 1)
≡ 1

2
(mod p).

By the congruence (3.5), we can understand that p | H1 if and only if at
least one of pairs (p, (p + 3)/4) and (p, (3p + 1)/4) is irregular. However it is
unknown whether these pairs are irregular or not as well as the pair (p, (p− 1)/2)
related to the Ankeny-Artin-Chowla Conjecture on the fundamental unit of the
real quadratic field Q(

√
p) with p ≡ 1 (mod 4).

Concerning an upper bound for H1, we can state

Proposition 3.4. Let p = 4q + 1 be an odd prime with q a prime. Then

H1 < q2 =

(
p− 1

4

)2

.

Proof. As stated in Section 2, C = |2U0/p − q| and D = |2U1/p − q|, where

Ua =
∑ (a)

k k for a = 0, 1. Here we can calculate Ua by means of a primitive root
g (mod p) as follows:

Ua =
∑ (a)

k k =

q−1∑
j=0

g4j+a =

q−1∑
j=0

(
g4j+a −

[
g4j+a

p

]
p
)

=
ga(g4q − 1)

g4 − 1
− p

q−1∑
j=0

[
g4j+a

p

]
.

Using this we have∣∣∣∣2Uap − q
∣∣∣∣ = 2

∣∣∣∣∣∣ ga

g4 − 1
qp(g)−

q−1∑
j=0

[
g4j+a

p

]
− q

2

∣∣∣∣∣∣ . (3.10)
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Since x− 1 < [x] ≤ x for a real number x,

q−1∑
j=0

(
g4j+a

p
− 1

)
=

ga

g4 − 1
qp(g)− q <

q−1∑
j=0

[
g4j+a

p

]

≤
q−1∑
j=0

g4j+a

p
=

ga

g4 − 1
qp(g),

and hence it follows that

−q
2
<

q−1∑
j=0

[
g4j+a

p

]
− ga

g4 − 1
qp(g) +

q

2
≤ q

2
.

Consequently, from (3.10) we can show |2Ua/p− q| < q for each a = 0, 1 and this
leads to H1 = (C2 +D2)/2 < q2 as indicated. �

The size of H2 is much larger than that of H1 and it is surmised that H2 grows
more than exponentially with p. In fact, putting for a general prime p

G(p) = 2p
( p

2π2

)(p−1)/2
,

Kummer conjectured in 1851 that asymptotically h−p ∼ G(p) as p → ∞, i.e.

limp→∞ h−p /G(p) = 1. The proof of this assertion is unknown, however Granville
expanded heuristic arguments in [6] and proved that the Elliott-Halberstam and
the Hardy-Littlewood Conjectures together imply that Kummer’s Conjecture is
false (see also Fung et al. [5]). On the other hand, Lepistö [9] proved the bounds

− 1

2
log p− 4 log log p− 12.93− 4.66

log p

≤ log

(
h−p
G(p)

)
≤ 5 log log p+ 15.49 +

4.66

log p
,

which shows that h−p grows rapidly. We cannot adopt the same argument as above
because it is still open whether there exist infinitely many pairs (p, q) of primes
satisfying p = 4q + 1, but we suppose from Proposition 3.4 that the growth of
H2 = h−p /H1 will be amazingly fast.

Here we want to enumerate concrete examples of h−p , H1, H2, (C,D) and (S, T )
for a few primes p = 4q + 1 with q a prime.

Examples:

• (p, q) = (13, 3): h−p = 1;
H1 = 1, (C,D) = (1, 1); H2 = 1, (S, T ) = (5, 2).
• (p, q) = (29, 7): h−p = 23;

H1 = 1, (C,D) = (1, 1); H2 = 23, (S, T ) = (2 · 11, 2 · 3).
• (p, q) = (53, 13): h−p = 4889;

H1 = 1, (C,D) = (1, 1); H2 = 4889, (S, T ) = (25 · 3 · 5, 47).
• (p, q) = (149, 37): h−p = 32 · 149 · 512966338320040805461;

H1 = 32, (C,D) = (3, 3); H2 = 149 · 512966338320040805461,
(S, T ) = (3 · 149 · 14489 · 145091, 2 · 149 · 1788084143).
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• (p, q) = (173, 43): h−p = 5 · 20297 · 231169 · 72571729362851870621;
H1 = 5, (C,D) = (1, 3);
H2 = 20297 · 231169 · 72571729362851870621,
(S, T ) = (2 · 32 · 2978771 · 14703269237, 131 · 16477 · 55695394459).

It seems from numerical tables (e.g., [8]) and other inspections that the following
statements hold, although we do not have any definite ideas how to prove them.

(1) H1 < p and hence p - H1.

(2) p | h−p ⇐⇒ p | H2 ⇐⇒ p | S and p | T .

(3) 2 - h−p =⇒ l2 - H2 for any odd primes l (i.e. H2 is square-free).

It is possible to give an upper bound for logH1/ log p as a deduction from the
Brauer-Siegel Theorem (cf. [16, Chapter 4]). We cannot say exactly now, but such
an estimation may be useful to confirm (1).

In this paper, we discussed some arithmetic properties of factors of h−p only for
the case when p has the form p = 4q + 1 with q a prime. It is possible to extend
above results to more general cases for primes p = 2nq + 1 where n ≥ 3 and q is
an odd prime.
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