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ON THE ULTRA-QUASI-TIGHT EXTENSIONS

DEMCO KALUSOKOMA MUKONGO, OLIVIER OLELA OTAFUDU
and WILSON BOMBE TOKO

Abstract. In their previous paper [4], Künzi and Olela Otafudu constructed the
ultra-quasi-metric hull of a T0-ultra-quasi-metric space. In this article, we continue
these studies by investigating the tightness and essentiality of extension maps in
the category of ultra-quasi-metric spaces and nonexpansive maps. We show, for
instance, that q-spherical completeness is preserved by a retraction map. Further-
more, we point out some categorical aspects of ultra-quasi-metrically injective hulls.

1. Introduction

In [2], Agyingi et al. investigated tight extensions in the category of T0-quasi-
metric spaces. Their results were used to study endpoints in T0-quasi-metric
spaces. Furthermore, Agyingi [1] introduced tight extensions in the category of
ultra-quasi-metric spaces and nonexpansive maps by extending the results from [2]
on the tight extensions from quasi-metric point of view to the framework of ultra-
quasi-metric spaces.

In this article, we introduce the concept of tightness and essentiality of nonex-
pansive maps in the category of ultra-quasi-metric spaces and nonexpansive maps
that we call ultra-quasi-tight and ultra-quasi-essential, respectively. We point out
that the approach used in this article is different to the ultra-tree construction
approach used in [1], but our findings extend the results from [3] and [6] on metric
and quasi-metric settings, respectively. We establish, among other results, that
ultra-quasi-tightness and ultra-quasi-essentiality of an extension of an ultra-quasi-
metric space are equivalent. Comparable studies in the framework of T0-quasi-
metric spaces have been conducted before by Olela Otafudu and Mushaandja [6].

In addition, we show, for instance, that there exists a covariant functor from
the category of T0-ultra-quasi-metric spaces and nonexpansive maps into the cat-
egory of ultra-quasi-metrically injective hulls on a T0-ultra-quasi-metric space and
nonexpansive maps.

2. Preliminaries

In the sequel, we shall consider supA for some subsets A ⊆ [0,∞). We recall that
supA = 0 if A = ∅. Let X be a set and v : X ×X → [0,∞) be a function. Then,
v is an ultra-quasi-pseudometric on X if
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(a) v(x, x) = 0 for all x ∈ X,
(b) v(x, y) ≤ max{v(x, z), v(z, y)} for all x, y, z ∈ X.

If v is an ultra-quasi-pseudometric on X, then the pair (X, v) is called an ultra-
quasi-pseudometric space.

If the function v satisfies the condition
(c) for any x, y ∈ X, v(x, y) = 0 = v(y, x) implies x = y instead of condi-

tion (a),
then v is called a T0-ultra-quasi-metric on X and the pair (X, v) is called T0-ultra-
quasi-metric space (see for instance [4, 5]).

Furthermore, if v is an ultra-quasi-pseudometric on X, then the function vt :
X × X → [0,∞) defined by vt(x, y) = v(y, x), for all x, y ∈ X is also an ultra-
quasi-pseudometric on X and it is called the conjugate ultra-quasi-pseudometric
of v.

Note that for any v ultra-quasi-pseudometric on X, the function vs defined by
vs(x, y) := max{v(x, y), vt(x, y)} is an ultra-pseudometric on X.

Example 2.1. ([4, Example 1]) Let the set X = [0,∞). If we endow X with
the function n defined by

n(a, b) =
{
a if a > b
0 if a ≤ b

for all x, y ∈ X, then n is a T0-ultra-quasi-metric on X. Furthermore, one sees
that

ns(a, b) =
{

max{a, b} if a ̸= b
0 if a = b

whenever a, b ∈ X.

Lemma 2.2. ([4, Lemma 1]) Let (X, v) be an ultra-quasi-pseudometric space
and f : X → [0,∞) be a function. For any x, y ∈ X, we have

n(f(x), f(y)) ≤ v(x, y) if and only if f(x) ≤ max{f(y), v(x, y)}.

Proof. (⇒) Suppose that f(x) > max{f(y), v(x, y)}. Then, f(x) > f(y), so
n(f(x), f(y)) = f(x) ≤ v(x, y) by hypothesis. Then, f(x) ≤ max{f(y), v(x, y)} <
f(x), which yields a contradiction.

(⇐) If n(f(x), f(y)) > v(x, y) ≥ 0, then f(y) < f(x); the hypothesis gives
f(x) ≤ v(x, y), giving the contradiction that n(f(x), f(y)) = f(x) ≤ v(x, y). □

We recall that a map h : (X, v) → (Y,w) between two ultra-quasi-pseudometric
spaces (X, v) and (Y,w) is called nonexpansive provided w(h(x), h(y)) ≤ v(x, y) for
all x, y ∈ X. The map h : (X, v) → (Y,w) is called an isometry map provided that
w(h(x), h(y)) = v(x, y) for all x, y ∈ X. Moreover, two ultra-quasi-pseudometric
spaces (X, v) and (Y,w) will be called isometric provided that there exists a bi-
jective isometric map h : (X, v) → (Y,w).

Corollary 2.3. ([4, Corollary 1]) Let (X, v) be an ultra-quasi-pseudometric
space. Then,
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(a) the function f : (X, v) → ([0,∞), n) is a nonexpansive map if and only if
f(x) ≤ max{f(y), v(x, y)}, for all x, y ∈ X;

(b) the function f : (X, v) → ([0,∞), nt) is a nonexpansive map if and only if
f(x) ≤ max{f(y), v(y, x)}, for all x, y ∈ X.

3. Isbell-convex ultra-quasi-metric space

We start this section by recalling some useful concepts from [4] needed in the
sequel.

Consider an ultra-quasi-metric space (X, v). Let x ∈ X and ϵ ∈ [0,∞). Then,
the set Cv(x, ϵ) = {z ∈ X : v(x, z) ≤ ϵ} is a τ(vt)-closed ball of radius ϵ at x.

Let (xi)i∈I be a family of points in X and let (ϵi)i∈I and (δi)i∈I be families of
points in [0,∞). We say that the family of double balls (Cv(xi, ϵi), Cvt(xi, δi))i∈I
has the mixed binary intersection property provided v(xi, xj) ≤ max{ϵi, δj}, for all
i, j ∈ I.

Furthermore, we say that (X, v) is q-spherically complete (or Isbell-convex ultra-
quasi-metric space [4]) provided that each family of double balls

(Cv(xi, ϵi), Cvt(xi, δi))i∈I ,
possessing the mixed binary intersection property satisfies⋂

i∈I
[Cv(xi, ϵi) ∩ Cvt(xi, δi)] ̸= 0.

For any x, y ∈ X and ϵ, δ ≥ 0, we know from [4, Lemma 9] that
Cv(x, ϵ) ∩ Cvt(y, δ) ̸= ∅ if and only if v(x, y) ≤ max{ϵ, δ}.

Example 3.1. ([4, Example 2]) If we equip [0,∞) with the T0-ultra-quasi-
metric n in Example 2.1, then ([0,∞), n) is an Isbell-convex ultra-quasi-metric
space.

Definition 3.2. (Compare [6, Definition 5]) Let (X, vX) and (Y, vY ) be ultra-
quasi-pseudometric spaces. A map ϕ : (X, vX) → (Y, vY ) is called a retraction if
ϕ is onto, nonexpansive and there exists an isometry φ : (Y, vY ) → (X, vX) such
that ϕ ◦ φ = IdY .

Proposition 3.3. Let (X, vX) and (Y, vY ) be two ultra-quasi-pseudometric
spaces. If (X, vX) is an Isbell-convex ultra-quasi-pseudometric space and the map
ϕ : (X, vX) → (Y, vY ) is a retraction, then (Y, vY ) is an Isbell-convex ultra-quasi-
pseudometric space too.

Proof. Let (CvY
(yi, ri), Cvt

Y
(yi, si))i∈I be a family of double balls in (Y, vY )

having the mixed binary intersection property. We have to show that⋂
i∈I

CvY
(yi, ri) ∩ Cvt

Y
(yi, si) ̸= ∅.

Since ϕ : (X, vX) → (Y, vY ) is a retraction, then there exists an isometry φ :
(Y, vY ) → (X, vX) such that ϕ ◦ φ = IdY . Then, for all i, j ∈ I, we have
vY (yi, yj) ≤ max{ri, sj} by the mixed binary intersection property. Furthermore,

vY (φ(yi), φ(yj)) = vX(yi, yj) ≤ max{ri, sj}, for all i, j ∈ I.
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We have that ⋂
i∈I

[CvY
(φ(yi), ri) ∩ Cvt

Y
(φ(yi), si)] ̸= ∅.

Let a ∈
⋂
i∈I [CvY

(φ(yi), ri)∩Cvt
Y

(φ(yi), si)]. Since ϕ is a nonexpansive map, then
for all i ∈ I, we have

vY (ϕ(a), yi) = vY (ϕ(a), ϕ(φ(yi))) ≤ vX(a, φ(yi)) ≤ si,

and
vY (yi, ϕ(a)) = vY (ϕ(φ(yi)), ϕ(a)) ≤ vX(φ(yi), a) ≤ ri.

Hence, ϕ(a) ∈ CvY
(yi, ri) ∩ Cvt

Y
(yi, si), for all i ∈ I. Therefore,⋂

i∈I
CvY

(yi, ri) ∩ Cvt
Y

(yi, si) ̸= ∅,

which completes the proof. □

Definition 3.4. (Compare [2, Definition 2]) Let (Y, v) be a T0-ultra-quasi-
metric space. If X is a subspace of (Y, v), then (Y, v) is said to be an ultra-tight
extension of X if, for any ultra-quasi-pseudometric w on Y such that w ≤ v and
w agrees with v on X ×X, we have w = v.

Let (X, vX) be a T0-ultra-quasi-metric space. The pair of functions f = (f1, f2),
where fi : X → [0,∞)(i = 1, 2), is called strongly tight [4] provided

vX(x, y) ≤ max{f2(x), f1(y)} for all, x, y ∈ X.

We say that a pair of functions f = (f1, f2) is extremal strongly tight [4] (or
minimal) among the strongly tight pairs of functions on (X, vX) provided that
it is a strongly tight pair if and only if for any strongly tight pair of function
g = (g1, g2) on (X, vX) such that g1(x) ≤ f1(x) and g2(x) ≤ f2(x) for all x ∈ X
we have g1(x) = f1(x) and g2(x) = f2(x).

Let UT (X, vX) denote the class of all strongly tight pairs of functions on
(X, vX). For each f = (f1, f2) and g = (g1, g2) ∈ UT (X, vX), we set

NX(f, g) = max{sup
x∈X

n(f1(x), g1(x)), sup
x∈X

n(g2(x), f2(x))}.

Then, NX is an extended T0-ultra-quasi-metric on UT (X, vX).
In what follows, we denote by νq(X, vX) the class of minimal strongly tight

pairs of functions on (X, vX).
Moreover, we keep the same notationNX for the restriction ofNX to νq(X, vX)×

νq(X, vX). Then, NX is a (real-valued) T0-ultra-quasi-metric on νq(X, vX) (see [4]
for more details).

If the pair of functions f = (f1, f2) is minimal strongly tight on (X, vX), then

f1(x) = sup
x∈X

n(vX(y, x), f2(y)),

and
f2(x) = sup

x∈X
n(vX(x, y), f1(y)),

for any x ∈ X (see [4, Corollary 4]).
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For any x ∈ X, the pair of functions fx(y) = (vX(x, y), vX(y, x)) for all x ∈ X is
minimal strongly tight on (X, vX). The map eX defined by x 7→ fx, for any x ∈ X
defines an isometric embedding of (X, vX) into (νq(X, vX), NX) (see [4, Theorem
1]). The pair (νq(X, vX), NX) is called an ultra-quasi-metrically injective hull of
(X, vX). Note that the ultra-quasi-metrically injective hull of a T0-ultra-quasi-
metric space is q-spherically complete (or Isbell-convex ultra-quasi-metric space)
and it is unique up to isometry.

The proof of the following result can be found in [1, Theorem 23].

Proposition 3.5. Let (Y, vY ) be a T0-ultra-quasi-metric space. If X is a sub-
space of (Y, vY ), then the following three conditions are equivalent:

(a) (Y, vY ) is an ultra-quasi-tight extension of X;
(b) v(y, y′) = sup{v(x, x′) : x, x′ ∈ X, v(x, x′) > v(x, y), v(x, x′) > v(y′, x′)}

for all y, y′ ∈ Y ;
(c) eY |X(y)(x) = (v(y, x), v(x, y)), x ∈ X, is minimal on X for all y ∈ Y and

the map ϕ : (Y, v) → (νq(X, v), N) : y 7→ eY |X is an isometric embedding.

Let (Y, v) be an ultra-tight extension of X. From Proposition 3.5, one observes
that if the map v : Y → (νq(X, v), N) is defined by v(y) = fy for all y ∈ Y , then v is
a unique isometric embedding (see [1]). Therefore, the ultra-quasi extension (Y, v)
of X is seen as a subspace of the extension (νq(X, v), N) of X. Thus, (νq(X, v), N)
is maximal among the T0-ultra-quasi-metric ultra-quasi extensions of X.

Definition 3.6. Let (X, vX) be an ultra-quasi-pseudometric space. Let (xi)i∈I
and (yi)i∈I be families of points in X, and (ri)i∈I , (si)i∈I be families of positive
real numbers. We say that the family C = (CvX

(xi, ri), Cvt
X

(yi, si))i∈I of double
balls in X meets potentially in X provided that there exists a T0-ultra-quasi-
metric ultra-quasi-metric extension (Y, vY ) of (X, vX) such that

⋂
i∈I(CvY

(xi, ri)∩
Cvt

Y
(yi, si)) ̸= ∅.

Proposition 3.7. (Compare [2, Proposition 6]) Let (X, vX) be a T0-ultra-quasi-
metric space. If C = (CvX

(xi, ri), Cvt
X

(xi, si))i∈I is a family of double balls in X,
then the following conditions are equivalent:

(a) C meets potentially in X;
(b) For any i, j ∈ I, CvX

(xi, ri) meets potentially in X with any CvX
(xj , rj);

(c) vX(xi, xj) ≤ max{ri, sj}, for all i, j ∈ I;
(d) there exists a minimal (strongly tight) function pair h = (h1, h2) on X

with h2(xi) ≤ ri and h1(xi) ≤ si for all i ∈ I.

Proof. We only prove (c) ⇒ (d) and (d) ⇒ (a), since (a) ⇒(b) ⇒(c) are straight-
forward.

(c) ⇒ (d) is obvious for I = ∅. For I ̸= ∅, on Y = {xi : i ∈ I} and for all y ∈ Y ,
we define g = (g1, g2) by g1(y) = inf{si : xi = y} and g2(y) = inf{ri : xi = y}.

Let y0 ∈ Y . Then, we set

f1(x) =
{
g1(x) if x ∈ Y

max{g1(y0), vX(y0, x)} if x ∈ X \ Y
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and

f2(x) =
{
g2(x) if x ∈ Y

max{vX(x, y0), g2(y0)} if x ∈ X \ Y.

It follows that f1(xi) ≤ si and f2(xi) ≤ ri for all i ∈ I. Moreover, for any
x, x′ ∈ X, we have

vX(x, x′) ≤ max{vX(x, xi), vX(xi, x′)} ≤ max{f2(x), f1(x′)}.
Thus, f = (f1, f2) is strongly tight on X. By Zorn’s Lemma there exists a minimal
strongly tight function pair h = (h1, h2) on X such that h1(x) ≤ f1(x) and h2(x) ≤
f2(x), for all x ∈ X. Hence, h ≤ f .

(d) ⇒ (a) Suppose that h = (h1, h2) is a minimal strongly tight function pair
on X such that h1(xi) ≤ si and h2(xi) ≤ ri for all i ∈ I.

If for some x ∈ X, h = (vX(x, .), vX(., x)), then

x ∈
⋂
i∈I

(CvX
(xi, ri) ∩ Cvt

X
(xi, si)).

Hence, the family C meets potentially in X.
If for some x ∈ X,h ̸= (vX(x, .), vX(., x)), then we extend X to a space Y by

adding one point y0 to X. Furthermore, we define a T0-ultra-quasi-metric vY on
Y which extends vX by vY (x, y0) = h2(x) and vY (y0, x) = h1(x) for all x ∈ X and
vY (y0, y0) = 0. By using the fact that h = (h1, h2) is a contracting function pair
and, by the strong tightness of h = (h1, h2), it is readily checked that vY satisfies
the strong triangle inequality on Y . Moreover, since h1(x) or h2(x) is positive, vY
is a T0-ultra-quasi-metric on Y . Therefore,

y0 ∈
⋂
i∈I

(CvY
(xi, ri) ∩ Cvt

Y
(xi, si)),

which completes the proof. □

4. Ultra-quasi-tight extension

We introduce the concepts of ultra-quasi-tightness and ultra-quasi-essentiality of
an extension, and we show that these two concepts are equivalent.

Definition 4.1. Let (X, vX) and (Y, vY ) be T0-ultra-quasi-metric spaces and
α : (X, vX) → (Y, vY ) be an extension of (X, vX). Then,

(a) the map α is said to be ultra-quasi-tight provided that for any T0-ultra-
quasi-metric v on Y , which satisfies v(y1, y2) ≤ vY (y1, y2) for all y1, y2 ∈ Y
and v(α(x1), α(x2)) = vX(x1, x2) for all x1, x2 ∈ X, we have that v = vY .

(b) the map α is said to be ultra-quasi-essential provided that for any nonex-
pansive map φ : (Y, vY ) → (Z, vZ), for which φ ◦ α : (X, vX) → (Z, vZ) is
an extension of (X, vX), we have that φ is an extension of (Y, vY ).

Theorem 4.2. Let (X, vX) and (Y, vY ) be T0-ultra-quasi-metric spaces and
α : (X, vX) → (Y, vY ) be an extension of (X, vX). Then, α is ultra-quasi-tight if
and only if α is ultra-quasi-essential.
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Proof. (⇐) Suppose that the extension map α : (X, vX) → (Y, vY ) is ultra-
quasi-essential. Let v be a T0-ultra-quasi-metric on Y such that

v(y1, y2) ≤ vY (y1, y2), for all y1, y2 ∈ Y

and
v(α(x1), α(x2)) = vX(x1, x2), for all x1, x2 ∈ X.

Since the identity map idY : (Y, vY ) → (Y, vY ) is nonexpansive and α is an isome-
try, we have that idY ◦α is an isometry by ultra-quasi-essentiality of α and v = vY .
Hence, α is ultra-quasi-tight.

(⇒) Suppose that the extension map α : (X, vX) → (Y, vY ) is ultra-quasi-tight
and let φ : (Y, vY ) → (Z, vZ) be an isometry, where (Z, vZ) is a T0-ultra-quasi-
metric space. In order to show that α is ultra-quasi-essential, let us consider v to
be a T0-ultra-quasi-metric on Y defined by

v(y, y′) = max{kvY (y, y′), (1 − k)vZ(φ(y), φ(y′))}
for all y, y′ ∈ Y and 0 < k < 1. For any y, y′ ∈ Y , we have

v(y, y′) = max{kvY (y, y′), (1 − k)vZ(φ(y), φ(y′))}
≤ max{kvY (y, y′), (1 − k)vY (y, y′)} (φ is nonexpansive )
≤ vY (y, y′).

Thus,
v(y, y′) ≤ vY (y, y′) for all y, y′ ∈ Y.

We claim that v(α(x), α(x′)) = vX(x, x′) for all x, x′ ∈ X. Suppose that
v(α(x), α(x′)) ̸= vX(x, x′).

Case 1. If v(α(x), α(x′)) > vX(x, x′). Then, by the definition of T0-ultra-quasi-
metric v, we have
v(α(x), α(x′)) = max{kvY (α(x), α(x′)), (1 − k)vZ(φ(α(x), φ(α(x′)))}

= max{kvX(x, x′), (1 − k)vX(x, x′)} (α and φ ◦ α are isometries)
≤ vX(x, x′) (a contradiction).

Case 2. If v(α(x), α(x′)) < vX(x, x′), then let y = α(x), y′ = α(x′) be-
cause α is an isometry. In addition, since α is an isometry, we have vY (y, y′) =
vY (α(x), α(x′)) = vX(x, x′) > v(α(x), α(x′)) = v(y1, y2) - this contradicts (1).

Hence, v(α(x), α(x′)) = vX(x, x′) = vY (α(x), α(x′)) for all x, x′ ∈ X. Further-
more, we have v(y, y′) = vY (y, y′) for all y, y′ ∈ Y by the ultra-quasi-tightness
of α. It follows that for all y, y′ ∈ Y ,

vZ(φ(y), φ(y′)) = vZ(φ(α(x)), φ(α(x′)))
= vX(x, x′) = vY (α(x), α(x′)) = vY (y, y′).

Thus, φ is an isometry, and hence α is ultra-quasi-essential. □

Theorem 4.3. For any T0-ultra-quasi-metric spaces (X, vX) and (Y, vY ), if
the map α : (X, vX) → (Y, vY ) is an extension of (X, vX), then the following
conditions are equivalent:

(a) α : (X, vX) → (Y, vY ) is ultra-quasi-tight;
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(b) α : (X, vX) → (Y, vY ) is ultra-quasi-essential;
(c) vY (y, y′) = sup{vX(x, x′) : x, x′ ∈ X, vX(x, x′) > vY (α(x), y), vX(x, x′) >

vY (y′, α(x′))}, for all y, y′ ∈ Y ;
(d) eY |X(y)(x) = (vX(y, x), vX(x, y)), x ∈ X, is minimal on X for all y ∈ Y

and the map ϕ : (Y, vY ) → (νq(X, vX), NX) : y 7→ eY |X is an isometric
embedding.

Proof. The proof follows from [1, Theorem 23] and Theorem 4.2. □

Proposition 4.4. Let (X, v) and (Y, vY ) be T0-ultra-quasi-metric spaces. If
α : (X, v) → (Y, vY ) is an ultra-quasi-tight extension, then there exists a unique
ultra-quasi-tight extension eY : (Y, vY ) → (νq(X, v), NX) such that the triangle

(X, v) (Y, vY )

(νq(X, v), NX)

α

eX
eY

commutes.

Proof. Indeed, we have that (νq(X, v), NX) is ultra-quasi-metric injective by
[4, Theorem 2] as (νq(X, v), NX) is a q-spherically complete T0-ultra-quasi-metric
space. Then, this guarantees the existence of the map eY and the commutativity
of the diagram.

From Theorem 4.3, we have that the map α : (X, v) → (Y, vY ) is an ultra-quasi-
essential as it is ultra-quasi-tight and eY ◦ α = eX is an isometry. It follows that
eY : (Y, vY ) → (νq(X, v), NX) is an isometry.

Suppose that e′
Y : (Y, vY ) → (νq(X, v), NX) is another isometry such that

e′
Y ◦ α = eX . We have to show that eY = e′

Y .
Let y ∈ Y and x ∈ X. We have

(eY (y))1(x) = NX(eY (y), eX(x)) = NX(eY (y), eY (α(x))) = vY (y, α(x))
= vY (e′

Y (y), e′
Y (α(x))) = NX(e′

Y (y), eX(x)) = (e′
Y (y))1(x).

Hence, (eY (y))1(x) = (e′
Y (y))1(x), for all x ∈ X.

Furthermore, one shows by duality that (eY (y))2(x) = (e′
Y (y))2(x), for all x ∈

X. So eY = eX , which ends the proof. □

Definition 4.5. Let (Y, vY ) be a T0-ultra-quasi-metric space. Then, (Y, vY )
is called ultra-quasi-metrically injective provided that whenever (X, vX) is a T0-
ultra-quasi-metric space, any subspace A of (X, vX) and any nonexpansive map
φ : A → (Y, vY ), φ can be extended to a nonexpansive map ϕ : (X, vX) → (Y, vY ).

Definition 4.6. Let (X, vX) and (Y, vY ) be T0-ultra-quasi-metric spaces. In
addition, suppose α : (X, vX) → (Y, vY ) is an extension of (X, vX). Then, α(X)
is called

(a) an ultra-quasi-metrically injective hull of (X, vX) provided that (Y, vY ) is
q-spherically complete and α is ultra-quasi-tight,

(b) an ultra-quasi-metrically injection of (X, vX) provided that (Y, vY ) is ultra-
quasi-metrically injective and α is ultra-quasi-metric-essential.

The following is a consequence of Theorem 4.3 and [4, Theorem 2].
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Proposition 4.7. Let (X, vX)and (Y, vY ) be T0-ultra-quasi-metric spaces. If
α : (X, vX) → (Y, vY ) is an extension of (X, vX), then (Y, vY ) is an ultra-quasi-
metrically injective hull of (X, vX) if and only if α(X) is an ultra-quasi-metrically
injection of (X, vX).

Theorem 4.8. Let (X, vX) and (Y, vY ) be T0-ultra-quasi-metric spaces. If
α : (X, vX) → (Y, vY ) is an ultra-quasi-tight extension of (X, vX), then there
exists an isomorphism φ : (νq(X, vX), NX) → (νq(Y, vY ), NY ).

Proof. Let α : (X, vX) → (Y, vY ) be an ultra-quasi-tight extension of (X, vX).
If e′

Y : (Y, vY ) → (νq(Y, vY ), NY ) is an extension, then by Proposition 4.4, there
exists a unique ultra-quasi-extension eY : (Y, vY ) → (νq(X, vY ), NX) such that the
triangle

(X, vX) (Y, vY )

(νq(X, vX), NX)

α

eX eY

commutes.
Since eY ◦ α = eX is ultra-quasi-tight and eY is ultra-quasi-tight, there exists

a unique ultra-quasi-tight extension g : (νq(X, vX), NX) → (νq(Y, vY ), NY ). By
the maximality of e′

Y , we have

(Y, vY ) (νq(X, vX), NX)

(νq(Y, vY ), NY )

eY

e′
Y

g

commutes.
Furthermore, by the ultra-quasi-tightness of e′

Y = g ◦ eY , it follows that g is
ultra-quasi-tight, since (νq(X, vX), NX) is unique up to isometry by [4, Proposition
7(b)]. Hence, g is an isomorphism. □

The following lemma is an ultra-quasi-metric version of [6, Lemma 15]. There-
fore, we leave its proof to the reader.

Lemma 4.9. Let (X, vX)and (Y, vY ) be T0-ultra-quasi-metric spaces. An ex-
tension α : (X, vX) → (Y, vY ) of (X, vX) is ultra-quasi-tight if whenever y, y′ ∈ Y ,
we have vY (y, y′) = sup{vX(x, x′) : x, x′ ∈ X, vX(x, x′) > vY (α(x), y), vX(x, x′) >
vY (y′, α(x))}.

Remark 4.10. From Lemma 4.9, it is easy to see that for any T0-ultra-quasi-
metric space (X, v), the isometry eX : (X, v) → (νq(X, v), NX) is an ultra-quasi-
tight extension of (X, v). We have

NX(f, g) = sup{v(x, x′) : x, x′ ∈ X, v(x, x′) > f2(x) and v(x, x′) > g1(x′)},

from [4, Lemma 8]. Moreover, NX(f, g) = sup{v(x, x′) : x, x′ ∈ X, v(x, x′) >
NX(eX(x), f) and v(x, x′) > NX(g, eX(x′))} for any f = (f1, f2), g = (g1, g2) ∈
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νq(X, v). Furthermore, eX(X) is an ultra-quasi-metrically injective hull and ultra-
quasi-metrically injective because (νq(X, v), NX) is an ultra-quasi-metrically injec-
tive hull. In addition, eX is a maximal ultra-tight extension of (X, v) by Proposi-
tion 4.4.

Remark 4.11. The maximal ultra-quasi-tight extension of any T0-ultra-quasi-
metric space (X, vX) is unique up to isomorphism.

5. A functor between ultra-quasi-metrically injective hulls

Let (X, v) and (Y,w) be T0-ultra-quasi-metric spaces and φ : (X, v) → (Y,w) be
a nonexpansive map. For any y ∈ Y and (f1, f2) ∈ (νq(X, v), NX), we define a pair
of functions fφ = ((fφ)1, (fφ)2) by

(fφ)1(y) := inf
x∈X

max{w(φ(x), y), f1(x)}

and

(fφ)2(y) := inf
x∈X

max{w(y, φ(x)), f2(x)}.

It is easy to see that the functions (fφ)1 : Y → [0,∞) and (fφ)2 : Y → [0,∞)
are well defined.

Proposition 5.1. Let (X, v) and (Y,w) be T0-ultra-quasi-metric spaces and
φ : (X, v) → (Y,w) be a nonexpansive map. Then, we have:

(a) The function pair fφ = ((fφ)1, (fφ)2) is strongly tight on (Y,w) whenever
f = (f1, f2) ∈ νq(X, v).

(b) If x ∈ X, then (fφ)1(φ(x)) = 0 = (fφ)2(φ(x)).
(c) The functions (fφ)1 : (Y,w) → ([0,∞), nt) and (fφ)2 : (Y,w) → ([0,∞), n)

are nonexpansive.

Proof. It is easy to prove (b). Therefore, we only prove (a) and (c).
(a) Let y, y′ ∈ Y . Then,

max{(fφ)2(y), (fφ)1(y′)}

= max
(

inf
x∈X

max{w(y, φ(x)), f2(x)}, inf
x′∈X

max{w(φ(x′), y′), f1(x′)}
)

≥ inf
x,x′∈X

max{w(y, φ(x)), w(φ(x′), y′), f2(x), f1(x′)}

≥ inf
x,x′

max{w(y, φ(x)), v(x, x′), w(φ(x′), y′)} (f is strongly tight)

≥ inf
x,x′

max{w(y, φ(x)), w(φ(x), φ(x′)), w(φ(x′), y′)} (φnonexpansive)

= w(y, y′) (by strong triangle inequality).

Thus, fφ = ((fφ)1, (fφ)2) is strongly tight on (Y,w).
(c) Let us prove that (fφ)2 : Y → [0,∞) is nonexpansive and the proof for

(fφ)1 : (Y,w) → ([0,∞), nt) can be obtained by similar arguments.
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Let y ∈ Y . Then,
(fφ)2(y) = inf

x∈X
max{w(y, φ(x)), f2(x)}

≤ inf
x∈X

max{w(y, y′), w(y′, φ(x)), f2(x)}

≤ max(w(y, y′), inf
x∈X

max{w(y′, φ(x)), f2(x)})

= max{w(y, y′), (fφ)2(y′)} (by definition of (fφ)2).

Hence, (fφ)2 is nonexpansive. □

Proposition 5.2. Let (X, v) and (Y,w) be T0-ultra-quasi-metric spaces and
φ : (X, v) → (Y,w) be a nonexpansive map. Then, the function pair fφ =
((fφ)1, (fφ)2) is minimal strongly tight on (Y,w) whenever f = (f1, f2) ∈ νq(X, v).

Proof. Let f = (f1, f2) ∈ νq(X, v). Suppose that the function pair fφ =
((fφ)1, (fφ)2) is not minimal strongly tight on (Y,w).

Let g = (g1, g2) be a strongly tight function pair such that
(g1, g2) < ((fφ)1, (fφ)2).

Then, there exists y0 ∈ Y such that g1(y0) ≤ (fφ)1(y0) and g2(y0) ≤ (fφ)2(y0).
Suppose g2(y0) < (fφ)2(y0). The case g1(y0) < (fφ)1(y0) follows similarly. For

any x ∈ X, since (fφ)2 is nonexpasive bz Proposition 5.1(c), it follows that
(fφ)2(y0) ≤ max{w(y0, φ(x)), (fφ)2(φ(x))}

≤ max{g2(y0), g1(φ(x)), (fφ)2(φ(x))} (by the strong tightness of g)
≤ max{g2(y0), (fφ)1(φ(x)), (fφ)2(φ(x))}
= g2(y0) (by Proposition 5.1(b)).

We reach a contradiction. Hence, fφ = ((fφ)1, (fφ)2) is a minimal strongly tight
function pair on (Y,w). □

Lemma 5.3. Let (X, v) and (Y,w) be T0-ultra-quasi-metric spaces and φ :
(X, v) → (Y,w) be a nonexpansive map. Then,

NY (fφ, gφ) ≤ NX(f, g) whenever f = (f1, f2), g = (g1, g2) ∈ νq(X, v).

Proof. Let y ∈ Y and f = (f1, f2), g = (g1, g2) ∈ νq(X, v). We just consider
the case n((fφ)1(y), (gφ)1(y)) = (fφ)1(y). If n((fφ)1(y), (gφ)1(y)) = 0, there is
nothing to prove.

Then, we have
n((fφ)1(y), (gφ)1(y)) = (fφ)1(y) = inf

x∈X
max{w(φ(x), y), f1(x)}

≤ max{w(y, y), f1(x)} (takingφ(x) = y)
= f1(x)
≤ sup
x∈X

n(f1(x), g1(x)).

Hence,
sup
y∈Y

n((fφ)1(y), (gφ)1(y)) ≤ sup
x∈X

n(f1(x), g1(x)). (5.1)
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Furthermore, by duality, one shows that
sup
y∈Y

n((gφ)2(y), (fφ)2(y)) ≤ sup
x∈X

n(g2(x), f2(x)). (5.2)

Combining inequalities (5.1) and (5.2), we have
NY (fφ, gφ) ≤ NX(f, g) whenever f = (f1, f2), g = (g1, g2) ∈ νq(X, v).

□

Proposition 5.4. Let (X,u), (Y, v) and (Z,w) be T0-ultra-quasi-metric spaces.
If the maps φ : (X,u) → (Y, v) and ψ : (Y, v) → (Z,w) are nonexpansive,
then we have fψ◦φ = (fφ)ψ, where the function pair fψ◦φ is defined by fψ◦φ :=
((fψ◦φ)1, (fψ◦φ)2) whenever f = (f1, f2) ∈ νq(X, v).

Proof. Let f = (f1, f2) ∈ νq(X, v). We only prove that (fψ◦φ)1(z) = ((fφ)ψ)1(z)
whenever z ∈ Z and the proof of (fψ◦φ)2(z) = ((fφ)ψ)2(z) whenever z ∈ Z follows
by similar arguments.

For any z ∈ Z, we have
((fφ)ψ)1(z) = inf

y∈Y
max{w(ψ(y), z), (fφ)1(y)}

= inf
x∈X,y∈Y

max{w(ψ(y), z), v(φ(x), y), f1(x)}

≥ inf
x∈X,y∈Y

max{w(ψ(y), z), w(ψ(φ(x)), ψ(y)), f1(x)} (since ψ is nonexpansive)

≥ inf
x∈X

max{w(ψ(φ(x)), z), f1(x)} (by strong triangle inequality).

Thus,
((fφ)ψ)1(z) ≥ (fψ◦φ)1(z) for all z ∈ Z. (5.3)

Moreover, for any z ∈ Z, we have
((fφ)ψ)1(z) = inf

y∈Y
max{w(ψ(y), z), (fφ)1(y)}

≤ inf
x∈X

max{w(ψ(φ(x))), (fφ)1(φ(x))} (taking y = φ(x))

≤ inf
x∈X

w(ψ(φ(x))) since (fφ)1(φ(x)) = 0

≤ inf
x∈X

max{w(ψ(φ(x))), f1(x)} since f1(x) ≥ 0.

Hence,
((fφ)ψ)1(z) ≤ (fψ◦φ)1(z) for all z ∈ Z. (5.4)

By combining inequalities (5.3) and (5.4), we have the desired equality. □

Remark 5.5. Let (X, v) be a T0-quasi-metric space. The the identity map
IdX : (X, v) → (X, v) is a nonexpansive map. For any f = (f1, f2) ∈ νq(X, v) and
x ∈ X, we have

(fIdX
)1(x) = inf

x′∈X
max{v(Idx(x′), x), f1(x′)}

= f1(x) (by taking x = x′).
Similarly, (fIdX

)2(x) = f2(x) whenever x ∈ X. Therefore, fIdX
= f whenever

f = (f1, f2) ∈ νq(X, v).



ON THE ULTRA-QUASI-TIGHT EXTENSIONS 113

In the following, UQMS denotes the category of T0-ultra-quasi-metric spaces
with nonexpansive maps and IUQMS denotes the category of ultra-quasi-metrically
injective hulls on a T0-ultra-quasi-metric space with nonexpansive maps.

For any two objects (X, v) and (Y,w) of UQMS and for any nonexpansive map
φ : (X, v) → (Y,w), we define νq : UQMS → IUQMS by

νq(φ)(f) := fφ whenever f = (f1, f2) ∈ νq(X, v).

The following result is a consequence of Proposition 5.1, Proposition 5.2, Lemma
5.3, Proposition 5.4 and Remark 5.5.

Proposition 5.6. Let (X, v) and (Y,w) be T0-ultra-quasi-metric spaces and φ :
(X, v) → (Y,w) be a nonexpansive map. Then, for any f = (f1, f2) ∈ νq(X, v), we
have that νq(φ)(f) defined above is a covariant functor from UQMS into IUQMS.

Theorem 5.7. Let (X, v) and (Y,w) be T0-ultra-quasi-metric spaces and φ :
(X, v) → (Y,w) be a nonexpansive map. Then, the following diagram is commu-
tative.

(X, v) νq(X, v)

(Y,w) νq(Y,w)

eX

φ νq(φ)

eY

Proof. Indeed, we show that (νq(φ) ◦ eX)(a) = (eY ◦φ)(a) for any a ∈ X. Since

(eY ◦ φ)(a) = eY (φ(a)) = fφ(a)

and
(νq(φ) ◦ eX)(a) = (νq(φ))(fa) = (fa)φ

whenever a ∈ X. It follows that we only need to show that

fφ(a)(y) = (fa)φ(y) for any y ∈ Y and a ∈ X.

Indeed, for any y ∈ Y , we have

((fa)φ)1(y) = inf
b∈X

max[w(φ(b), y), (fa)1(b)]

= inf
b∈X

max[w(φ(b), y), v(a, b)]

≥ inf
b∈X

max[w(φ(b), y), w(φ(a), φ(b))]

= w(φ(a), y).

Thus,

((fa)φ)1(y) ≥ (fφ(a))1(y) whenever y ∈ Y. (5.5)

Moreover,

((fa)φ)1(y) = inf
b∈X

max[w(φ(b), y), (fa)1(b)

= inf
b∈X

max[w(φ(b), y), v(a, b)]

≤ w(φ(a), y) (by taking b = a).
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So,
((fa)φ)1(y) ≤ (fφ(a))1(y) whenever y ∈ Y. (5.6)

From (5.5) and (5.6), we have ((fa)φ)1(y) = (fφ(a))1(y) whenever y ∈ Y. By
duality, one shows that

((fa)φ)2(y) = (fφ(a))2(y) whenever y ∈ Y.

Therefore,
fφ(a)(y) = (fa)φ(y) for any y ∈ Y and a ∈ X.

□

References

[1] C. A. Agyingi, Ultra-quasi-metrically tight extensions of ultra-quasi-metric spaces, Chin.
J. Math. (N.Y.) 2015 (2015), Article ID 646018, 7 pp.

[2] C. A. Agyingi, P. Haihambo and H.-P. A. Künzi, Tight extensions of T0-quasi-metric spaces,
in: V. Brattka, H. Diener and D. Spreen (eds.), Logic, Computation, Hierarchies, Ontos
Mathematical Logic 4, 2014, pp. 9–22.

[3] H. Herrlich, Hyperconvex hulls of metric spaces, Topology Appl. 44 (1992), 181–187.
[4] H-P. A. Künzi and O. Olela Otafudu, The ultra-quasi-metrically injective hull of a T0-ultra-

quasi-metric space, Appl. Categor. Struct. 21 (2013), 651–670.
[5] O. Olela Otafudu, The injective hull of ultra-quasi-metric versus q-hyperconvex hull of

quasi-metric space, Topology Appl. 203 (2016), 170–176.
[6] O. Olela Otafudu and Z. Mushaandja, Versatile asymmetric tight extensions, Topol. Algebra

Appl. 5 (2017), 6–12.

Demco Kalusokoma Mukongo, School of Mathematics, University of the Witwatersrand, Jo-
hannesburg 2050, South Africa
e-mail: demco.mukongo@gmail.com

Olivier Olela Otafudu, School of Mathematical and Statistical Sciences, North-West Univer-
sity, Potchefstroom Campus, Potchefstroom 2520, South Africa
e-mail: olivier.olelaotafudu@nwu.ac.za

Wilson Bombe Toko, Faculté des Sciences Informatiques Université Président Joseph Kasa
Vubu, Ville de Boma, RD Congo
e-mail: wbtoko@gmail.com


