Math. Appl. **12** (2023), 101–114 DOI: 10.13164/ma.2023.07

ON THE ULTRA-QUASI-TIGHT EXTENSIONS

DEMCO KALUSOKOMA MUKONGO, OLIVIER OLELA OTAFUDU AND WILSON BOMBE TOKO

Abstract. In their previous paper [4], Künzi and Olela Otafudu constructed the ultra-quasi-metric hull of a T_0 -ultra-quasi-metric space. In this article, we continue these studies by investigating the tightness and essentiality of extension maps in the category of ultra-quasi-metric spaces and nonexpansive maps. We show, for instance, that q-spherical completeness is preserved by a retraction map. Furthermore, we point out some categorical aspects of ultra-quasi-metrically injective hulls.

1. INTRODUCTION

In [2], Agyingi *et al.* investigated tight extensions in the category of T_0 -quasimetric spaces. Their results were used to study endpoints in T_0 -quasi-metric spaces. Furthermore, Agyingi [1] introduced tight extensions in the category of ultra-quasi-metric spaces and nonexpansive maps by extending the results from [2] on the tight extensions from quasi-metric point of view to the framework of ultraquasi-metric spaces.

In this article, we introduce the concept of tightness and essentiality of nonexpansive maps in the category of ultra-quasi-metric spaces and nonexpansive maps that we call *ultra-quasi-tight* and *ultra-quasi-essential*, respectively. We point out that the approach used in this article is different to the ultra-tree construction approach used in [1], but our findings extend the results from [3] and [6] on metric and quasi-metric settings, respectively. We establish, among other results, that ultra-quasi-tightness and ultra-quasi-essentiality of an extension of an ultra-quasimetric space are equivalent. Comparable studies in the framework of T_0 -quasimetric spaces have been conducted before by Olela Otafudu and Mushaandja [6].

In addition, we show, for instance, that there exists a covariant functor from the category of T_0 -ultra-quasi-metric spaces and nonexpansive maps into the category of ultra-quasi-metrically injective hulls on a T_0 -ultra-quasi-metric space and nonexpansive maps.

2. Preliminaries

In the sequel, we shall consider $\sup A$ for some subsets $A \subseteq [0, \infty)$. We recall that $\sup A = 0$ if $A = \emptyset$. Let X be a set and $v : X \times X \to [0, \infty)$ be a function. Then, v is an *ultra-quasi-pseudometric* on X if

MSC (2020): primary 54E35, 54C35, 54D35; secondary 54E55.

Keywords: Ultra-quasi-metric, ultra-quasi-tight, ultra-quasi-essential.

- (a) v(x, x) = 0 for all $x \in X$,
- (b) $v(x,y) \le \max\{v(x,z), v(z,y)\}$ for all $x, y, z \in X$.

If v is an ultra-quasi-pseudometric on X, then the pair (X, v) is called an *ultra-quasi-pseudometric space*.

If the function v satisfies the condition

(c) for any $x, y \in X, v(x, y) = 0 = v(y, x)$ implies x = y instead of condition (a),

then v is called a T_0 -ultra-quasi-metric on X and the pair (X, v) is called T_0 -ultraquasi-metric space (see for instance [4,5]).

Furthermore, if v is an ultra-quasi-pseudometric on X, then the function v^t : $X \times X \to [0, \infty)$ defined by $v^t(x, y) = v(y, x)$, for all $x, y \in X$ is also an ultraquasi-pseudometric on X and it is called the *conjugate ultra-quasi-pseudometric* of v.

Note that for any v ultra-quasi-pseudometric on X, the function v^s defined by $v^s(x, y) := \max\{v(x, y), v^t(x, y)\}$ is an ultra-pseudometric on X.

Example 2.1. ([4, Example 1]) Let the set $X = [0, \infty)$. If we endow X with the function n defined by

$$n(a,b) = \begin{cases} a & \text{if } a > b \\ 0 & \text{if } a \le b \end{cases}$$

for all $x, y \in X$, then n is a T₀-ultra-quasi-metric on X. Furthermore, one sees that

$$n^{s}(a,b) = \begin{cases} \max\{a,b\} & \text{if } a \neq b \\ 0 & \text{if } a = b \end{cases}$$

whenever $a, b \in X$.

Lemma 2.2. ([4, Lemma 1]) Let (X, v) be an ultra-quasi-pseudometric space and $f: X \to [0, \infty)$ be a function. For any $x, y \in X$, we have

$$n(f(x), f(y)) \le v(x, y) \text{ if and only if } f(x) \le \max\{f(y), v(x, y)\}.$$

Proof. (\Rightarrow) Suppose that $f(x) > \max\{f(y), v(x, y)\}$. Then, f(x) > f(y), so $n(f(x), f(y)) = f(x) \le v(x, y)$ by hypothesis. Then, $f(x) \le \max\{f(y), v(x, y)\} < f(x)$, which yields a contradiction.

 (\Leftarrow) If $n(f(x), f(y)) > v(x, y) \ge 0$, then f(y) < f(x); the hypothesis gives $f(x) \le v(x, y)$, giving the contradiction that $n(f(x), f(y)) = f(x) \le v(x, y)$. \Box

We recall that a map $h: (X, v) \to (Y, w)$ between two ultra-quasi-pseudometric spaces (X, v) and (Y, w) is called *nonexpansive* provided $w(h(x), h(y)) \leq v(x, y)$ for all $x, y \in X$. The map $h: (X, v) \to (Y, w)$ is called an *isometry map* provided that w(h(x), h(y)) = v(x, y) for all $x, y \in X$. Moreover, two ultra-quasi-pseudometric spaces (X, v) and (Y, w) will be called *isometric* provided that there exists a bijective isometric map $h: (X, v) \to (Y, w)$.

Corollary 2.3. ([4, Corollary 1]) Let (X, v) be an ultra-quasi-pseudometric space. Then,

- (a) the function $f: (X, v) \to ([0, \infty), n)$ is a nonexpansive map if and only if $f(x) \le \max\{f(y), v(x, y)\}$, for all $x, y \in X$;
- (b) the function $f: (X, v) \to ([0, \infty), n^t)$ is a nonexpansive map if and only if $f(x) \le \max\{f(y), v(y, x)\}$, for all $x, y \in X$.

3. ISBELL-CONVEX ULTRA-QUASI-METRIC SPACE

We start this section by recalling some useful concepts from [4] needed in the sequel.

Consider an ultra-quasi-metric space (X, v). Let $x \in X$ and $\epsilon \in [0, \infty)$. Then, the set $C_v(x, \epsilon) = \{z \in X : v(x, z) \le \epsilon\}$ is a $\tau(v^t)$ -closed ball of radius ϵ at x.

Let $(x_i)_{i\in I}$ be a family of points in X and let $(\epsilon_i)_{i\in I}$ and $(\delta_i)_{i\in I}$ be families of points in $[0,\infty)$. We say that the family of double balls $(C_v(x_i,\epsilon_i), C_{v^t}(x_i,\delta_i))_{i\in I}$ has the *mixed binary intersection property* provided $v(x_i, x_j) \leq \max{\epsilon_i, \delta_j}$, for all $i, j \in I$.

Furthermore, we say that (X, v) is *q*-spherically complete (or Isbell-convex ultraquasi-metric space [4]) provided that each family of double balls

$$(C_v(x_i,\epsilon_i),C_{v^t}(x_i,\delta_i))_{i\in I},$$

possessing the mixed binary intersection property satisfies

$$\bigcap_{i \in I} [C_v(x_i, \epsilon_i) \cap C_{v^t}(x_i, \delta_i)] \neq 0.$$

For any $x, y \in X$ and $\epsilon, \delta \ge 0$, we know from [4, Lemma 9] that

 $C_v(x,\epsilon) \cap C_{v^t}(y,\delta) \neq \emptyset$ if and only if $v(x,y) \le \max\{\epsilon,\delta\}$.

Example 3.1. ([4, Example 2]) If we equip $[0, \infty)$ with the T_0 -ultra-quasimetric n in Example 2.1, then $([0, \infty), n)$ is an Isbell-convex ultra-quasi-metric space.

Definition 3.2. (Compare [6, Definition 5]) Let (X, v_X) and (Y, v_Y) be ultraquasi-pseudometric spaces. A map $\phi : (X, v_X) \to (Y, v_Y)$ is called a *retraction* if ϕ is onto, nonexpansive and there exists an isometry $\varphi : (Y, v_Y) \to (X, v_X)$ such that $\phi \circ \varphi = Id_Y$.

Proposition 3.3. Let (X, v_X) and (Y, v_Y) be two ultra-quasi-pseudometric spaces. If (X, v_X) is an Isbell-convex ultra-quasi-pseudometric space and the map $\phi : (X, v_X) \to (Y, v_Y)$ is a retraction, then (Y, v_Y) is an Isbell-convex ultra-quasi-pseudometric space too.

Proof. Let $(C_{v_Y}(y_i, r_i), C_{v_Y^t}(y_i, s_i))_{i \in I}$ be a family of double balls in (Y, v_Y) having the mixed binary intersection property. We have to show that

$$\bigcap_{i\in I} C_{v_Y}(y_i, r_i) \cap C_{v_Y^t}(y_i, s_i) \neq \emptyset.$$

Since $\phi : (X, v_X) \to (Y, v_Y)$ is a retraction, then there exists an isometry $\varphi : (Y, v_Y) \to (X, v_X)$ such that $\phi \circ \varphi = Id_Y$. Then, for all $i, j \in I$, we have $v_Y(y_i, y_j) \leq \max\{r_i, s_j\}$ by the mixed binary intersection property. Furthermore,

$$v_Y(\varphi(y_i), \varphi(y_j)) = v_X(y_i, y_j) \le \max\{r_i, s_j\}, \text{ for all } i, j \in I.$$

We have that

$$\bigcap_{i \in I} [C_{v_Y}(\varphi(y_i), r_i) \cap C_{v_Y^t}(\varphi(y_i), s_i)] \neq \emptyset.$$

Let $a \in \bigcap_{i \in I} [C_{v_Y}(\varphi(y_i), r_i) \cap C_{v_Y^t}(\varphi(y_i), s_i)]$. Since ϕ is a nonexpansive map, then for all $i \in I$, we have

$$v_Y(\phi(a), y_i) = v_Y(\phi(a), \phi(\varphi(y_i))) \le v_X(a, \varphi(y_i)) \le s_i,$$

and

$$v_Y(y_i,\phi(a)) = v_Y(\phi(\varphi(y_i)),\phi(a)) \le v_X(\varphi(y_i),a) \le r_i.$$

Hence, $\phi(a) \in C_{v_Y}(y_i, r_i) \cap C_{v_Y^t}(y_i, s_i)$, for all $i \in I$. Therefore,

$$\bigcap_{i \in I} C_{v_Y}(y_i, r_i) \cap C_{v_Y^t}(y_i, s_i) \neq \emptyset$$

which completes the proof.

Definition 3.4. (Compare [2, Definition 2]) Let (Y, v) be a T_0 -ultra-quasimetric space. If X is a subspace of (Y, v), then (Y, v) is said to be an ultra-tight extension of X if, for any ultra-quasi-pseudometric w on Y such that $w \leq v$ and w agrees with v on $X \times X$, we have w = v.

Let (X, v_X) be a T_0 -ultra-quasi-metric space. The pair of functions $f = (f_1, f_2)$, where $f_i : X \to [0, \infty)(i = 1, 2)$, is called *strongly tight* [4] provided

$$v_X(x,y) \le \max\{f_2(x), f_1(y)\}\$$
 for all, $x, y \in X$.

We say that a pair of functions $f = (f_1, f_2)$ is extremal strongly tight [4] (or minimal) among the strongly tight pairs of functions on (X, v_X) provided that it is a strongly tight pair if and only if for any strongly tight pair of function $g = (g_1, g_2)$ on (X, v_X) such that $g_1(x) \leq f_1(x)$ and $g_2(x) \leq f_2(x)$ for all $x \in X$ we have $g_1(x) = f_1(x)$ and $g_2(x) = f_2(x)$.

Let $\mathcal{UT}(X, v_X)$ denote the class of all strongly tight pairs of functions on (X, v_X) . For each $f = (f_1, f_2)$ and $g = (g_1, g_2) \in \mathcal{UT}(X, v_X)$, we set

$$N_X(f,g) = \max\{\sup_{x \in X} n(f_1(x), g_1(x)), \sup_{x \in X} n(g_2(x), f_2(x))\}.$$

Then, N_X is an extended T_0 -ultra-quasi-metric on $\mathcal{UT}(X, v_X)$.

In what follows, we denote by $\nu_q(X, v_X)$ the class of minimal strongly tight pairs of functions on (X, v_X) .

Moreover, we keep the same notation N_X for the restriction of N_X to $\nu_q(X, v_X) \times \nu_q(X, v_X)$. Then, N_X is a (real-valued) T_0 -ultra-quasi-metric on $\nu_q(X, v_X)$ (see [4] for more details).

If the pair of functions $f = (f_1, f_2)$ is minimal strongly tight on (X, v_X) , then

$$f_1(x) = \sup_{x \in X} n(v_X(y, x), f_2(y)),$$

and

$$f_2(x) = \sup_{x \in X} n(v_X(x, y), f_1(y)),$$

for any $x \in X$ (see [4, Corollary 4]).

104

For any $x \in X$, the pair of functions $f_x(y) = (v_X(x, y), v_X(y, x))$ for all $x \in X$ is minimal strongly tight on (X, v_X) . The map e_X defined by $x \mapsto f_x$, for any $x \in X$ defines an isometric embedding of (X, v_X) into $(\nu_q(X, v_X), N_X)$ (see [4, Theorem 1]). The pair $(\nu_q(X, v_X), N_X)$ is called an *ultra-quasi-metrically injective hull* of (X, v_X) . Note that the ultra-quasi-metrically injective hull of a T_0 -ultra-quasimetric space is q-spherically complete (or Isbell-convex ultra-quasi-metric space) and it is unique up to isometry.

The proof of the following result can be found in [1, Theorem 23].

Proposition 3.5. Let (Y, v_Y) be a T_0 -ultra-quasi-metric space. If X is a subspace of (Y, v_Y) , then the following three conditions are equivalent:

- (a) (Y, v_Y) is an ultra-quasi-tight extension of X;
- (b) $v(y, y') = \sup\{v(x, x') : x, x' \in X, v(x, x') > v(x, y), v(x, x') > v(y', x')\}$ for all $y, y' \in Y$;
- (c) $e_Y|_X(y)(x) = (v(y, x), v(x, y)), x \in X$, is minimal on X for all $y \in Y$ and the map $\phi : (Y, v) \to (\nu_q(X, v), N) : y \mapsto e_Y|_X$ is an isometric embedding.

Let (Y, v) be an ultra-tight extension of X. From Proposition 3.5, one observes that if the map $v: Y \to (\nu_q(X, v), N)$ is defined by $v(y) = f_y$ for all $y \in Y$, then v is a unique isometric embedding (see [1]). Therefore, the ultra-quasi extension (Y, v)of X is seen as a subspace of the extension $(\nu_q(X, v), N)$ of X. Thus, $(\nu_q(X, v), N)$ is maximal among the T_0 -ultra-quasi-metric ultra-quasi extensions of X.

Definition 3.6. Let (X, v_X) be an ultra-quasi-pseudometric space. Let $(x_i)_{i \in I}$ and $(y_i)_{i \in I}$ be families of points in X, and $(r_i)_{i \in I}, (s_i)_{i \in I}$ be families of positive real numbers. We say that the family $\mathcal{C} = (C_{v_X}(x_i, r_i), C_{v_X^t}(y_i, s_i))_{i \in I}$ of double balls in X meets potentially in X provided that there exists a T_0 -ultra-quasimetric ultra-quasi-metric extension (Y, v_Y) of (X, v_X) such that $\bigcap_{i \in I} (C_{v_Y}(x_i, r_i) \cap C_{v_X^t}(y_i, s_i)) \neq \emptyset$.

Proposition 3.7. (Compare [2, Proposition 6]) Let (X, v_X) be a T_0 -ultra-quasimetric space. If $\mathcal{C} = (C_{v_X}(x_i, r_i), C_{v_X^t}(x_i, s_i))_{i \in I}$ is a family of double balls in X, then the following conditions are equivalent:

- (a) C meets potentially in X;
- (b) For any $i, j \in I, C_{v_X}(x_i, r_i)$ meets potentially in X with any $C_{v_X}(x_i, r_i)$;
- (c) $v_X(x_i, x_j) \leq \max\{r_i, s_j\}$, for all $i, j \in I$;
- (d) there exists a minimal (strongly tight) function pair $h = (h_1, h_2)$ on X with $h_2(x_i) \leq r_i$ and $h_1(x_i) \leq s_i$ for all $i \in I$.

Proof. We only prove $(c) \Rightarrow (d)$ and $(d) \Rightarrow (a)$, since $(a) \Rightarrow (b) \Rightarrow (c)$ are straightforward.

(c) \Rightarrow (d) is obvious for $I = \emptyset$. For $I \neq \emptyset$, on $Y = \{x_i : i \in I\}$ and for all $y \in Y$, we define $g = (g_1, g_2)$ by $g_1(y) = \inf\{s_i : x_i = y\}$ and $g_2(y) = \inf\{r_i : x_i = y\}$.

Let $y_0 \in Y$. Then, we set

$$f_1(x) = \begin{cases} g_1(x) & \text{if } x \in Y \\ \max\{g_1(y_0), v_X(y_0, x)\} & \text{if } x \in X \setminus Y \end{cases}$$

and

$$f_2(x) = \begin{cases} g_2(x) & \text{if } x \in Y \\ \max\{v_X(x, y_0), g_2(y_0)\} & \text{if } x \in X \setminus Y \end{cases}$$

It follows that $f_1(x_i) \leq s_i$ and $f_2(x_i) \leq r_i$ for all $i \in I$. Moreover, for any $x, x' \in X$, we have

$$v_X(x, x') \le \max\{v_X(x, x_i), v_X(x_i, x')\} \le \max\{f_2(x), f_1(x')\}$$

Thus, $f = (f_1, f_2)$ is strongly tight on X. By Zorn's Lemma there exists a minimal strongly tight function pair $h = (h_1, h_2)$ on X such that $h_1(x) \leq f_1(x)$ and $h_2(x) \leq f_2(x)$, for all $x \in X$. Hence, $h \leq f$.

(d) \Rightarrow (a) Suppose that $h = (h_1, h_2)$ is a minimal strongly tight function pair on X such that $h_1(x_i) \leq s_i$ and $h_2(x_i) \leq r_i$ for all $i \in I$.

If for some $x \in X$, $h = (v_X(x, .), v_X(., x))$, then

$$x \in \bigcap_{i \in I} (C_{v_X}(x_i, r_i) \cap C_{v_X^t}(x_i, s_i)).$$

Hence, the family \mathcal{C} meets potentially in X.

If for some $x \in X, h \neq (v_X(x, .), v_X(., x))$, then we extend X to a space Y by adding one point y_0 to X. Furthermore, we define a T_0 -ultra-quasi-metric v_Y on Y which extends v_X by $v_Y(x, y_0) = h_2(x)$ and $v_Y(y_0, x) = h_1(x)$ for all $x \in X$ and $v_Y(y_0, y_0) = 0$. By using the fact that $h = (h_1, h_2)$ is a contracting function pair and, by the strong tightness of $h = (h_1, h_2)$, it is readily checked that v_Y satisfies the strong triangle inequality on Y. Moreover, since $h_1(x)$ or $h_2(x)$ is positive, v_Y is a T_0 -ultra-quasi-metric on Y. Therefore,

$$y_0 \in \bigcap_{i \in I} (C_{v_Y}(x_i, r_i) \cap C_{v_Y^t}(x_i, s_i)),$$

which completes the proof.

4. Ultra-quasi-tight extension

We introduce the concepts of ultra-quasi-tightness and ultra-quasi-essentiality of an extension, and we show that these two concepts are equivalent.

Definition 4.1. Let (X, v_X) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces and $\alpha : (X, v_X) \to (Y, v_Y)$ be an extension of (X, v_X) . Then,

- (a) the map α is said to be *ultra-quasi-tight* provided that for any T_0 -ultraquasi-metric v on Y, which satisfies $v(y_1, y_2) \leq v_Y(y_1, y_2)$ for all $y_1, y_2 \in Y$ and $v(\alpha(x_1), \alpha(x_2)) = v_X(x_1, x_2)$ for all $x_1, x_2 \in X$, we have that $v = v_Y$.
- (b) the map α is said to be *ultra-quasi-essential* provided that for any nonexpansive map $\varphi : (Y, v_Y) \to (Z, v_Z)$, for which $\varphi \circ \alpha : (X, v_X) \to (Z, v_Z)$ is an extension of (X, v_X) , we have that φ is an extension of (Y, v_Y) .

Theorem 4.2. Let (X, v_X) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces and $\alpha : (X, v_X) \to (Y, v_Y)$ be an extension of (X, v_X) . Then, α is ultra-quasi-tight if and only if α is ultra-quasi-essential.

Proof. (\Leftarrow) Suppose that the extension map $\alpha : (X, v_X) \to (Y, v_Y)$ is ultraquasi-essential. Let v be a T_0 -ultra-quasi-metric on Y such that

$$v(y_1, y_2) \leq v_Y(y_1, y_2)$$
, for all $y_1, y_2 \in Y$

and

$$v(\alpha(x_1), \alpha(x_2)) = v_X(x_1, x_2), \text{ for all } x_1, x_2 \in X.$$

Since the identity map $id_Y : (Y, v_Y) \to (Y, v_Y)$ is nonexpansive and α is an isometry, we have that $id_Y \circ \alpha$ is an isometry by ultra-quasi-essentiality of α and $v = v_Y$. Hence, α is ultra-quasi-tight.

(⇒) Suppose that the extension map $\alpha : (X, v_X) \to (Y, v_Y)$ is ultra-quasi-tight and let $\varphi : (Y, v_Y) \to (Z, v_Z)$ be an isometry, where (Z, v_Z) is a T_0 -ultra-quasimetric space. In order to show that α is ultra-quasi-essential, let us consider v to be a T_0 -ultra-quasi-metric on Y defined by

$$v(y, y') = \max\{kv_Y(y, y'), (1 - k)v_Z(\varphi(y), \varphi(y'))\}$$

for all $y, y' \in Y$ and 0 < k < 1. For any $y, y' \in Y$, we have

$$\begin{aligned} v(y,y') &= \max\{kv_Y(y,y'), (1-k)v_Z(\varphi(y),\varphi(y'))\} \\ &\leq \max\{kv_Y(y,y'), (1-k)v_Y(y,y')\} \quad (\varphi \text{ is nonexpansive }) \\ &\leq v_Y(y,y'). \end{aligned}$$

Thus,

$$v(y, y') \leq v_Y(y, y')$$
 for all $y, y' \in Y$.
We claim that $v(\alpha(x), \alpha(x')) = v_X(x, x')$ for all $x, x' \in X$. Suppose that
 $v(\alpha(x), \alpha(x')) \neq v_X(x, x')$.

Case 1. If $v(\alpha(x), \alpha(x')) > v_X(x, x')$. Then, by the definition of T_0 -ultra-quasimetric v, we have

$$v(\alpha(x), \alpha(x')) = \max\{kv_Y(\alpha(x), \alpha(x')), (1-k)v_Z(\varphi(\alpha(x), \varphi(\alpha(x'))))\}$$

= $\max\{kv_X(x, x'), (1-k)v_X(x, x')\}$ (α and $\varphi \circ \alpha$ are isometries)
 $\leq v_X(x, x')$ (a contradiction).

Case 2. If $v(\alpha(x), \alpha(x')) < v_X(x, x')$, then let $y = \alpha(x), y' = \alpha(x')$ because α is an isometry. In addition, since α is an isometry, we have $v_Y(y, y') = v_Y(\alpha(x), \alpha(x')) = v_X(x, x') > v(\alpha(x), \alpha(x')) = v(y_1, y_2)$ - this contradicts (1).

Hence, $v(\alpha(x), \alpha(x')) = v_X(x, x') = v_Y(\alpha(x), \alpha(x'))$ for all $x, x' \in X$. Furthermore, we have $v(y, y') = v_Y(y, y')$ for all $y, y' \in Y$ by the ultra-quasi-tightness of α . It follows that for all $y, y' \in Y$,

$$v_Z(\varphi(y),\varphi(y')) = v_Z(\varphi(\alpha(x)),\varphi(\alpha(x')))$$

= $v_X(x,x') = v_Y(\alpha(x),\alpha(x')) = v_Y(y,y').$

Thus, φ is an isometry, and hence α is ultra-quasi-essential.

Theorem 4.3. For any T_0 -ultra-quasi-metric spaces (X, v_X) and (Y, v_Y) , if the map $\alpha : (X, v_X) \to (Y, v_Y)$ is an extension of (X, v_X) , then the following conditions are equivalent:

(a) $\alpha : (X, v_X) \to (Y, v_Y)$ is ultra-quasi-tight;

107

- (b) $\alpha: (X, v_X) \to (Y, v_Y)$ is ultra-quasi-essential;
- (c) $v_Y(y,y') = \sup\{v_X(x,x') : x, x' \in X, v_X(x,x') > v_Y(\alpha(x),y), v_X(x,x') > v_Y(y',\alpha(x'))\}, \text{ for all } y,y' \in Y;$
- (d) $e_Y|_X(y)(x) = (v_X(y, x), v_X(x, y)), x \in X$, is minimal on X for all $y \in Y$ and the map $\phi : (Y, v_Y) \to (\nu_q(X, v_X), N_X) : y \mapsto e_Y|_X$ is an isometric embedding.

Proof. The proof follows from [1, Theorem 23] and Theorem 4.2.

Proposition 4.4. Let (X, v) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces. If $\alpha : (X, v) \to (Y, v_Y)$ is an ultra-quasi-tight extension, then there exists a unique ultra-quasi-tight extension $e_Y : (Y, v_Y) \to (\nu_q(X, v), N_X)$ such that the triangle

commutes.

Proof. Indeed, we have that $(\nu_q(X, v), N_X)$ is ultra-quasi-metric injective by [4, Theorem 2] as $(\nu_q(X, v), N_X)$ is a *q*-spherically complete T_0 -ultra-quasi-metric space. Then, this guarantees the existence of the map e_Y and the commutativity of the diagram.

From Theorem 4.3, we have that the map $\alpha : (X, v) \to (Y, v_Y)$ is an ultra-quasiessential as it is ultra-quasi-tight and $e_Y \circ \alpha = e_X$ is an isometry. It follows that $e_Y : (Y, v_Y) \to (\nu_q(X, v), N_X)$ is an isometry.

Suppose that $e'_Y : (Y, v_Y) \to (\nu_q(X, v), N_X)$ is another isometry such that $e'_Y \circ \alpha = e_X$. We have to show that $e_Y = e'_Y$.

Let $y \in Y$ and $x \in X$. We have

$$(e_Y(y))_1(x) = N_X(e_Y(y), e_X(x)) = N_X(e_Y(y), e_Y(\alpha(x))) = v_Y(y, \alpha(x))$$

= $v_Y(e'_Y(y), e'_Y(\alpha(x))) = N_X(e'_Y(y), e_X(x)) = (e'_Y(y))_1(x).$

Hence, $(e_Y(y))_1(x) = (e'_Y(y))_1(x)$, for all $x \in X$.

Furthermore, one shows by duality that $(e_Y(y))_2(x) = (e'_Y(y))_2(x)$, for all $x \in X$. So $e_Y = e_X$, which ends the proof.

Definition 4.5. Let (Y, v_Y) be a T_0 -ultra-quasi-metric space. Then, (Y, v_Y) is called *ultra-quasi-metrically injective* provided that whenever (X, v_X) is a T_0 -ultra-quasi-metric space, any subspace A of (X, v_X) and any nonexpansive map $\varphi : A \to (Y, v_Y), \varphi$ can be extended to a nonexpansive map $\phi : (X, v_X) \to (Y, v_Y)$.

Definition 4.6. Let (X, v_X) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces. In addition, suppose $\alpha : (X, v_X) \to (Y, v_Y)$ is an extension of (X, v_X) . Then, $\alpha(X)$ is called

- (a) an ultra-quasi-metrically injective hull of (X, v_X) provided that (Y, v_Y) is q-spherically complete and α is ultra-quasi-tight,
- (b) an *ultra-quasi-metrically injection* of (X, v_X) provided that (Y, v_Y) is ultraquasi-metrically injective and α is ultra-quasi-metric-essential.

The following is a consequence of Theorem 4.3 and [4, Theorem 2].

Proposition 4.7. Let (X, v_X) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces. If $\alpha : (X, v_X) \to (Y, v_Y)$ is an extension of (X, v_X) , then (Y, v_Y) is an ultra-quasi-metrically injective hull of (X, v_X) if and only if $\alpha(X)$ is an ultra-quasi-metrically injection of (X, v_X) .

Theorem 4.8. Let (X, v_X) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces. If $\alpha : (X, v_X) \to (Y, v_Y)$ is an ultra-quasi-tight extension of (X, v_X) , then there exists an isomorphism $\varphi : (\nu_q(X, v_X), N_X) \to (\nu_q(Y, v_Y), N_Y)$.

Proof. Let $\alpha : (X, v_X) \to (Y, v_Y)$ be an ultra-quasi-tight extension of (X, v_X) . If $e'_Y : (Y, v_Y) \to (\nu_q(Y, v_Y), N_Y)$ is an extension, then by Proposition 4.4, there exists a unique ultra-quasi-extension $e_Y : (Y, v_Y) \to (\nu_q(X, v_Y), N_X)$ such that the triangle

$$(X, v_X) \xrightarrow{\alpha} (Y, v_Y)$$

$$\downarrow^{e_X} \downarrow^{e_Y}$$

$$(\nu_q(X, v_X), N_X)$$

commutes.

Since $e_Y \circ \alpha = e_X$ is ultra-quasi-tight and e_Y is ultra-quasi-tight, there exists a unique ultra-quasi-tight extension $g : (\nu_q(X, v_X), N_X) \to (\nu_q(Y, v_Y), N_Y)$. By the maximality of e'_Y , we have

$$\begin{array}{ccc} (Y, v_Y) & \xrightarrow{e_Y} & (\nu_q(X, v_X), N_X) \\ & & & & \downarrow^{e'_Y} & \downarrow^g \\ & & & & (\nu_q(Y, v_Y), N_Y) \end{array}$$

commutes.

Furthermore, by the ultra-quasi-tightness of $e'_Y = g \circ e_Y$, it follows that g is ultra-quasi-tight, since $(\nu_q(X, v_X), N_X)$ is unique up to isometry by [4, Proposition 7(b)]. Hence, g is an isomorphism.

The following lemma is an ultra-quasi-metric version of [6, Lemma 15]. Therefore, we leave its proof to the reader.

Lemma 4.9. Let (X, v_X) and (Y, v_Y) be T_0 -ultra-quasi-metric spaces. An extension $\alpha : (X, v_X) \to (Y, v_Y)$ of (X, v_X) is ultra-quasi-tight if whenever $y, y' \in Y$, we have $v_Y(y, y') = \sup\{v_X(x, x') : x, x' \in X, v_X(x, x') > v_Y(\alpha(x), y), v_X(x, x') > v_Y(y', \alpha(x))\}.$

Remark 4.10. From Lemma 4.9, it is easy to see that for any T_0 -ultra-quasimetric space (X, v), the isometry $e_X : (X, v) \to (\nu_q(X, v), N_X)$ is an ultra-quasitight extension of (X, v). We have

$$N_X(f,g) = \sup\{v(x,x') : x, x' \in X, v(x,x') > f_2(x) \text{ and } v(x,x') > g_1(x')\},\$$

from [4, Lemma 8]. Moreover, $N_X(f,g) = \sup\{v(x,x') : x,x' \in X, v(x,x') > N_X(e_X(x), f) \text{ and } v(x,x') > N_X(g,e_X(x'))\}$ for any $f = (f_1, f_2), g = (g_1,g_2) \in [g_1,g_2)$

 $\nu_q(X, v)$. Furthermore, $e_X(X)$ is an ultra-quasi-metrically injective hull and ultraquasi-metrically injective because $(\nu_q(X, v), N_X)$ is an ultra-quasi-metrically injective hull. In addition, e_X is a maximal ultra-tight extension of (X, v) by Proposition 4.4.

Remark 4.11. The maximal ultra-quasi-tight extension of any T_0 -ultra-quasimetric space (X, v_X) is unique up to isomorphism.

5. A functor between ultra-quasi-metrically injective hulls

Let (X, v) and (Y, w) be T_0 -ultra-quasi-metric spaces and $\varphi : (X, v) \to (Y, w)$ be a nonexpansive map. For any $y \in Y$ and $(f_1, f_2) \in (\nu_q(X, v), N_X)$, we define a pair of functions $f_{\varphi} = ((f_{\varphi})_1, (f_{\varphi})_2)$ by

$$(f_{\varphi})_1(y) := \inf_{x \in X} \max\{w(\varphi(x), y), f_1(x)\}$$

and

$$(f_{\varphi})_2(y) := \inf_{x \in X} \max\{w(y,\varphi(x)), f_2(x)\}.$$

It is easy to see that the functions $(f_{\varphi})_1 : Y \to [0,\infty)$ and $(f_{\varphi})_2 : Y \to [0,\infty)$ are well defined.

Proposition 5.1. Let (X, v) and (Y, w) be T_0 -ultra-quasi-metric spaces and $\varphi : (X, v) \to (Y, w)$ be a nonexpansive map. Then, we have:

- (a) The function pair $f_{\varphi} = ((f_{\varphi})_1, (f_{\varphi})_2)$ is strongly tight on (Y, w) whenever $f = (f_1, f_2) \in \nu_q(X, v).$
- (b) If $x \in X$, then $(f_{\varphi})_1(\varphi(x)) = 0 = (f_{\varphi})_2(\varphi(x))$.
- (c) The functions $(f_{\varphi})_1 : (Y, w) \to ([0, \infty), n^t)$ and $(f_{\varphi})_2 : (Y, w) \to ([0, \infty), n)$ are nonexpansive.

Proof. It is easy to prove (b). Therefore, we only prove (a) and (c). (a) Let $y, y' \in Y$. Then,

$$\max\{(f_{\varphi})_{2}(y), (f_{\varphi})_{1}(y')\} = \max\left(\inf_{x \in X} \max\{w(y, \varphi(x)), f_{2}(x)\}, \inf_{x' \in X} \max\{w(\varphi(x'), y'), f_{1}(x')\}\right)$$

$$\geq \inf_{x, x' \in X} \max\{w(y, \varphi(x)), w(\varphi(x'), y'), f_{2}(x), f_{1}(x')\}$$

$$\geq \inf_{x, x'} \max\{w(y, \varphi(x)), v(x, x'), w(\varphi(x'), y')\} \quad (f \text{ is strongly tight})$$

$$\geq \inf_{x, x'} \max\{w(y, \varphi(x)), w(\varphi(x), \varphi(x')), w(\varphi(x'), y')\} \quad (\varphi \text{ nonexpansive})$$

$$= w(y, y') \quad (\text{by strong triangle inequality}).$$

Thus, $f_{\varphi} = ((f_{\varphi})_1, (f_{\varphi})_2)$ is strongly tight on (Y, w).

(c) Let us prove that $(f_{\varphi})_2 : Y \to [0, \infty)$ is nonexpansive and the proof for $(f_{\varphi})_1 : (Y, w) \to ([0, \infty), n^t)$ can be obtained by similar arguments.

Let $y \in Y$. Then,

$$(f_{\varphi})_{2}(y) = \inf_{x \in X} \max\{w(y, \varphi(x)), f_{2}(x)\}$$

$$\leq \inf_{x \in X} \max\{w(y, y'), w(y', \varphi(x)), f_{2}(x)\}$$

$$\leq \max(w(y, y'), \inf_{x \in X} \max\{w(y', \varphi(x)), f_{2}(x)\})$$

$$= \max\{w(y, y'), (f_{\varphi})_{2}(y')\} \text{ (by definition of } (f_{\varphi})_{2}).$$

Hence, $(f_{\varphi})_2$ is nonexpansive.

Proposition 5.2. Let (X, v) and (Y, w) be T_0 -ultra-quasi-metric spaces and $\varphi : (X, v) \to (Y, w)$ be a nonexpansive map. Then, the function pair $f_{\varphi} = ((f_{\varphi})_1, (f_{\varphi})_2)$ is minimal strongly tight on (Y, w) whenever $f = (f_1, f_2) \in \nu_q(X, v)$.

Proof. Let $f = (f_1, f_2) \in \nu_q(X, v)$. Suppose that the function pair $f_{\varphi} = ((f_{\varphi})_1, (f_{\varphi})_2)$ is not minimal strongly tight on (Y, w).

Let $g = (g_1, g_2)$ be a strongly tight function pair such that

$$(g_1, g_2) < ((f_{\varphi})_1, (f_{\varphi})_2)$$

Then, there exists $y_0 \in Y$ such that $g_1(y_0) \leq (f_{\varphi})_1(y_0)$ and $g_2(y_0) \leq (f_{\varphi})_2(y_0)$. Suppose $g_2(y_0) < (f_{\varphi})_2(y_0)$. The case $g_1(y_0) < (f_{\varphi})_1(y_0)$ follows similarly. For

any $x \in X$, since $(f_{\varphi})_2$ is nonexpasive by Proposition 5.1(c), it follows that

$$(f_{\varphi})_{2}(y_{0}) \leq \max\{w(y_{0},\varphi(x)), (f_{\varphi})_{2}(\varphi(x))\} \\ \leq \max\{g_{2}(y_{0}), g_{1}(\varphi(x)), (f_{\varphi})_{2}(\varphi(x))\} \quad \text{(by the strong tightness of } g) \\ \leq \max\{g_{2}(y_{0}), (f_{\varphi})_{1}(\varphi(x)), (f_{\varphi})_{2}(\varphi(x))\} \\ = g_{2}(y_{0}) \quad \text{(by Proposition 5.1(b)).}$$

We reach a contradiction. Hence, $f_{\varphi} = ((f_{\varphi})_1, (f_{\varphi})_2)$ is a minimal strongly tight function pair on (Y, w).

Lemma 5.3. Let (X, v) and (Y, w) be T_0 -ultra-quasi-metric spaces and φ : $(X, v) \to (Y, w)$ be a nonexpansive map. Then,

 $N_Y(f_{\varphi}, g_{\varphi}) \le N_X(f, g)$ whenever $f = (f_1, f_2), g = (g_1, g_2) \in \nu_q(X, v).$

Proof. Let $y \in Y$ and $f = (f_1, f_2), g = (g_1, g_2) \in \nu_q(X, v)$. We just consider the case $n((f_{\varphi})_1(y), (g_{\varphi})_1(y)) = (f_{\varphi})_1(y)$. If $n((f_{\varphi})_1(y), (g_{\varphi})_1(y)) = 0$, there is nothing to prove.

Then, we have

$$n((f_{\varphi})_{1}(y), (g_{\varphi})_{1}(y)) = (f_{\varphi})_{1}(y) = \inf_{x \in X} \max\{w(\varphi(x), y), f_{1}(x)\}$$

$$\leq \max\{w(y, y), f_{1}(x)\} \text{ (taking } \varphi(x) = y)$$

$$= f_{1}(x)$$

$$\leq \sup_{x \in X} n(f_{1}(x), g_{1}(x)).$$

Hence,

$$\sup_{y \in Y} n((f_{\varphi})_1(y), (g_{\varphi})_1(y)) \le \sup_{x \in X} n(f_1(x), g_1(x)).$$
(5.1)

 \Box

Furthermore, by duality, one shows that

$$\sup_{y \in Y} n((g_{\varphi})_2(y), (f_{\varphi})_2(y)) \le \sup_{x \in X} n(g_2(x), f_2(x)).$$
(5.2)

Combining inequalities (5.1) and (5.2), we have

$$N_Y(f_{\varphi}, g_{\varphi}) \le N_X(f, g)$$
 whenever $f = (f_1, f_2), g = (g_1, g_2) \in \nu_q(X, v).$

Proposition 5.4. Let (X, u), (Y, v) and (Z, w) be T_0 -ultra-quasi-metric spaces. If the maps $\varphi : (X, u) \to (Y, v)$ and $\psi : (Y, v) \to (Z, w)$ are nonexpansive, then we have $f_{\psi \circ \varphi} = (f_{\varphi})_{\psi}$, where the function pair $f_{\psi \circ \varphi}$ is defined by $f_{\psi \circ \varphi} :=$ $((f_{\psi \circ \varphi})_1, (f_{\psi \circ \varphi})_2)$ whenever $f = (f_1, f_2) \in \nu_q(X, v)$.

Proof. Let $f = (f_1, f_2) \in \nu_q(X, v)$. We only prove that $(f_{\psi \circ \varphi})_1(z) = ((f_{\varphi})_{\psi})_1(z)$ whenever $z \in Z$ and the proof of $(f_{\psi \circ \varphi})_2(z) = ((f_{\varphi})_{\psi})_2(z)$ whenever $z \in Z$ follows by similar arguments.

For any $z \in Z$, we have

$$\begin{split} &((f_{\varphi})_{\psi})_{1}(z) = \inf_{y \in Y} \max\{w(\psi(y), z), (f_{\varphi})_{1}(y)\} \\ &= \inf_{x \in X, y \in Y} \max\{w(\psi(y), z), v(\varphi(x), y), f_{1}(x)\} \\ &\geq \inf_{x \in X, y \in Y} \max\{w(\psi(y), z), w(\psi(\varphi(x)), \psi(y)), f_{1}(x)\} \quad (\text{since } \psi \text{ is nonexpansive}) \\ &\geq \inf_{x \in X} \max\{w(\psi(\varphi(x)), z), f_{1}(x)\} \quad (\text{by strong triangle inequality}). \end{split}$$

Thus,

$$((f_{\varphi})_{\psi})_1(z) \ge (f_{\psi \circ \varphi})_1(z) \quad \text{for all } z \in Z.$$
(5.3)

Moreover, for any $z \in Z$, we have

$$\begin{split} ((f_{\varphi})_{\psi})_1(z) &= \inf_{y \in Y} \max\{w(\psi(y), z), (f_{\varphi})_1(y)\} \\ &\leq \inf_{x \in X} \max\{w(\psi(\varphi(x))), (f_{\varphi})_1(\varphi(x))\} \quad (\text{taking } y = \varphi(x)) \\ &\leq \inf_{x \in X} w(\psi(\varphi(x))) \operatorname{since} (f_{\varphi})_1(\varphi(x)) = 0 \\ &\leq \inf_{x \in X} \max\{w(\psi(\varphi(x))), f_1(x)\} \operatorname{since} f_1(x) \ge 0. \end{split}$$

Hence,

$$((f_{\varphi})_{\psi})_1(z) \le (f_{\psi \circ \varphi})_1(z) \quad \text{for all } z \in Z.$$
(5.4)

By combining inequalities (5.3) and (5.4), we have the desired equality.

Remark 5.5. Let (X, v) be a T_0 -quasi-metric space. The the identity map $\mathrm{Id}_X : (X, v) \to (X, v)$ is a nonexpansive map. For any $f = (f_1, f_2) \in \nu_q(X, v)$ and $x \in X$, we have

$$(f_{\mathrm{Id}_X})_1(x) = \inf_{x' \in X} \max\{v(\mathrm{Id}_x(x'), x), f_1(x')\}$$

= $f_1(x)$ (by taking $x = x'$).

Similarly, $(f_{\mathrm{Id}_X})_2(x) = f_2(x)$ whenever $x \in X$. Therefore, $f_{\mathrm{Id}_X} = f$ whenever $f = (f_1, f_2) \in \nu_q(X, v)$.

In the following, UQMS denotes the category of T_0 -ultra-quasi-metric spaces with nonexpansive maps and IUQMS denotes the category of ultra-quasi-metrically injective hulls on a T_0 -ultra-quasi-metric space with nonexpansive maps.

For any two objects (X, v) and (Y, w) of UQMS and for any nonexpansive map $\varphi : (X, v) \to (Y, w)$, we define $\nu_q : \text{UQMS} \to \text{IUQMS}$ by

$$\nu_q(\varphi)(f) := f_{\varphi}$$
 whenever $f = (f_1, f_2) \in \nu_q(X, v)$.

The following result is a consequence of Proposition 5.1, Proposition 5.2, Lemma 5.3, Proposition 5.4 and Remark 5.5.

Proposition 5.6. Let (X, v) and (Y, w) be T_0 -ultra-quasi-metric spaces and φ : $(X, v) \to (Y, w)$ be a nonexpansive map. Then, for any $f = (f_1, f_2) \in \nu_q(X, v)$, we have that $\nu_q(\varphi)(f)$ defined above is a covariant functor from UQMS into IUQMS.

Theorem 5.7. Let (X, v) and (Y, w) be T_0 -ultra-quasi-metric spaces and φ : $(X, v) \to (Y, w)$ be a nonexpansive map. Then, the following diagram is commutative.

$$(X,v) \xrightarrow{e_X} \nu_q(X,v)$$
$$\downarrow^{\varphi} \qquad \qquad \qquad \downarrow^{\nu_q(\varphi)}$$
$$(Y,w) \xrightarrow{e_Y} \nu_q(Y,w)$$

Proof. Indeed, we show that $(\nu_q(\varphi) \circ e_X)(a) = (e_Y \circ \varphi)(a)$ for any $a \in X$. Since

$$(e_Y \circ \varphi)(a) = e_Y(\varphi(a)) = f_{\varphi(a)}$$

and

$$(\nu_q(\varphi) \circ e_X)(a) = (\nu_q(\varphi))(f_a) = (f_a)_{\varphi}$$

whenever $a \in X$. It follows that we only need to show that

$$f_{\varphi(a)}(y) = (f_a)_{\varphi}(y)$$
 for any $y \in Y$ and $a \in X$.

Indeed, for any $y \in Y$, we have

$$\begin{split} ((f_a)_{\varphi})_1(y) &= \inf_{b \in X} \max[w(\varphi(b), y), (f_a)_1(b)] \\ &= \inf_{b \in X} \max[w(\varphi(b), y), v(a, b)] \\ &\geq \inf_{b \in X} \max[w(\varphi(b), y), w(\varphi(a), \varphi(b))] \\ &= w(\varphi(a), y). \end{split}$$

Thus,

$$((f_a)_{\varphi})_1(y) \ge (f_{\varphi(a)})_1(y) \text{ whenever } y \in Y.$$
(5.5)

Moreover,

$$((f_a)_{\varphi})_1(y) = \inf_{b \in X} \max[w(\varphi(b), y), (f_a)_1(b)$$
$$= \inf_{b \in X} \max[w(\varphi(b), y), v(a, b)]$$
$$\leq w(\varphi(a), y) \quad (by taking b = a).$$

So,

$$((f_a)_{\varphi})_1(y) \le (f_{\varphi(a)})_1(y) \quad \text{whenever } y \in Y.$$
(5.6)

From (5.5) and (5.6), we have $((f_a)_{\varphi})_1(y) = (f_{\varphi(a)})_1(y)$ whenever $y \in Y$. By duality, one shows that

$$((f_a)_{\varphi})_2(y) = (f_{\varphi(a)})_2(y)$$
 whenever $y \in Y$.

Therefore,

$$f_{\varphi(a)}(y) = (f_a)_{\varphi}(y)$$
 for any $y \in Y$ and $a \in X$.

References

- C. A. Agyingi, Ultra-quasi-metrically tight extensions of ultra-quasi-metric spaces, Chin. J. Math. (N.Y.) 2015 (2015), Article ID 646018, 7 pp.
- [2] C. A. Agyingi, P. Haihambo and H.-P. A. Künzi, *Tight extensions of T₀-quasi-metric spaces*, in: V. Brattka, H. Diener and D. Spreen (eds.), Logic, Computation, Hierarchies, Ontos Mathematical Logic 4, 2014, pp. 9–22.
- [3] H. Herrlich, Hyperconvex hulls of metric spaces, Topology Appl. 44 (1992), 181–187.
- [4] H-P. A. Künzi and O. Olela Otafudu, The ultra-quasi-metrically injective hull of a T₀-ultraquasi-metric space, Appl. Categor. Struct. 21 (2013), 651–670.
- [5] O. Olela Otafudu, The injective hull of ultra-quasi-metric versus q-hyperconvex hull of quasi-metric space, Topology Appl. 203 (2016), 170–176.
- [6] O. Olela Otafudu and Z. Mushaandja, Versatile asymmetric tight extensions, Topol. Algebra Appl. 5 (2017), 6–12.

Demco Kalusokoma Mukongo, School of Mathematics, University of the Witwatersrand, Johannesburg 2050, South Africa

e-mail: demco.mukongo@gmail.com

Olivier Olela Otafudu, School of Mathematical and Statistical Sciences, North-West University, Potchefstroom Campus, Potchefstroom 2520, South Africa *e-mail*: olivier.olelaotafudu@nwu.ac.za

Wilson Bombe Toko, Faculté des Sciences Informatiques Université Président Joseph Kasa Vubu, Ville de Boma, RD Congo *e-mail*: wbtoko@gmail.com