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ALL MAXIMAL UNIT-REGULAR ELEMENTS OF
Relhyp((m), (n))

PORNPIMOL KUNAMA anxpD SORASAK LEERATANAVALEE

Abstract. Any relational hypersubstitution for algebraic systems of type (7,7’) =
((m4)icr, (nj)jes) is a mapping which maps any m;-ary operation symbol to an
m;-ary term and maps any nj-ary relational symbol to an nj-ary relational term
preserving arities, where I, J are indexed sets. The set of all relational hypersubsti-
tutions for algebraic systems of type (7, 7’) together with a binary operation defined
on the set and its identity forms a monoid. The properties of this structure are ex-
pressed by terms and formulas. Some algebraic properties of the monoid of a special
type, especially the set of all unit-regular elements, were studied. In this paper, we
determine all maximal unit-regular submonoids of this monoid of type ((m), (n))
for arbitrary natural numbers m,n > 2.

1. INTRODUCTION

In universal algebra, identities are used to classify algebras into collections called
varieties, and hyperidentities are used to classify varieties into collections called
hypervarieties. The tool which is used to study hyperidentities and hypervarieties
is the concept of a hypersubstitution introduced by W. Taylor [15]. The notation
of a hypersubstitution was developed by K. Denecke, D. Lau, R. Poschel and
D. Schweigert in 1991 [6]. The authors used this concept for the characterization
of solid varieties of type 7. A solid variety is a variety which is closed under the
following operation: taking a universal algebra (A, (f)icr) of type 7 = (m,)icr
with the universe A and family (fZA)ie[ of m;-ary operations fiA on A for i € I of
a variety, then we replace the operation fiA by any m;-ary term operation o (f;)4,
for i € I, and obtain a new universal algebra (A, (o(f;)4)icr), which also belongs
to the variety. Hence, a hypersubstitution of a given type 7 = (m;);cs is a mapping
which maps every m;-ary operation symbol f; to an m;-ary term of the same type,
for i € I. Moreover, the set Hyp(7) of all hypersubstitutions of type 7 together
with an associative binary operation o forms a monoid; see more details in [6,17].

However, we can consider algebraic systems in the sense of Mal’cev [11]. An
algebraic system of type (7, 7'/) is a triple (A, (f#)ier, (’yjA)jeJ) consisting of a non-
empty set A, a sequence ( fiA)lve 1 of n;-ary operations defined on A and a sequence
(’yj‘)je_] of n;-ary relations on A, where 7 = (n;);es is a sequence of the arity of
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each operation f/ and T = (nj)jes is a sequence of the arity of each relation ’yj‘-“.
The pair (7, T,) is called a type of an algebraic system; see more details in [12-14].

In 2008 [5], K. Denecke and D. Phusanga introduced the concept of a hyper-
substitution for algebraic systems, which is a mapping that assigns any operation
symbol to a term and assigns any relation symbol to a formula which preserves
the arity. The set of all hypersubstitutions for algebraic systems of type (7, TI)
is denoted by Hyp(r, 7'/). They defined an assosiative operation o, on this set
and proved that (Hyp(r, T/),OT,O'id) forms a monoid, where ;4 is an identity
hypersubstitution. In 2018 [14], D. Phusanga and J. Koppitz introduced the con-
cept of a relational hypersubstitution for algebraic systems of type (7,7’) and
proved that the set of all relational hypersubstitutions for algebraic systems of
type (7, 7') together with an assosiative binary operation and the identity element
forms a monoid.

Firstly, we recall the definition of some special elements in a semigroup. An
element a of a semigroup S is called unit-reqular if there exists u € U(S) such that
a = aua, where U(S) is the set of all unit elements of S and S is called unit-regular
if every element of S is unit-regular. Later in 1980, H. D’Alarcao showed that
a monoid S is factorisable if and only if it is unit-regular [4]. A number of authors
studied different factorisable semigroups. S.Y. Chen and S. C. Hsieh studied fac-
torisable inverse semigroups [3]. Y. Tirasupa studied factorisable transformation
semigroups [16]. In 2001 P. Jampachon, M. Saichalee and R.P. Sullivan used the
concept of factorisability to study locally factorisable transformation semigroups
[7]. In 2016, A. Boonmee and S. Leeratanavalee studied factorisable monoid of
generalized hypersubstitutions of type (n) [2]. In this paper, we determine all
maximal unit-regular elements of relational hypersubstitutions of type ((m), (n))
for arbitrary natural numbers m,n > 2.

Next, we recall the concept of an n-ary term of type 7 and an n-ary relational
term of type (7, 7’), respectively. Let X := {x1,...,2,,...} be a countably infinite
set of symbols called variables. For each n > 1, let X,, := {z1,...,2,}. Let
{fi : © € I} be the set of m;-ary operation symbols indexed by I, where m; > 1 is
a natural number. Let 7 be a function which assigns to every f; the number m;
as its arity. The function 7 = (m;)es is called a type. An n-ary term of type T is
defined inductively as follows.

(i) Every variable zj € X,, is an n-ary term of type .
(ii) If tq,...,t,, are n-ary terms of type 7 and f; is an n;-ary operation symbol,
then f;(t1,...,t,,) is an n-ary term of type 7.
We denote the set of all n-ary terms of type 7 which contains x1,...,x, and is

closed under finite application of (ii), by W;(X,) and W-(X) := U, e+ Wr(Xn)
be the set of all terms of type 7.

2. THE MONOID OF RELATIONAL HYPERSUBSTITUTIONS
FOR ALGEBRAIC SYSTEMS

Any relational hypersubstitution for algebraic systems is a mapping that assigns
any operation symbol to a term and assigns any relation symbol to a relational
term which preserves the arity. Let (7,7’) be a type. An n-ary relational term of
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type (7,7') and a relational hypersubstitution for algebraic systems are defined as
follows.

Definition 2.1. ([12]) Let I, J be indexed sets. If i € I,j € J and ty,ta,...,tp,
are n—ary terms of type 7 = (n;);cr and ~; is an nj—ary relation symbol, then
vj(t1,t2,. .., ty;) is an n—ary relational term of type (7, ) = ((n)ier, (nj)jes)-

We denote the set of all n—ary relational terms of type (7, 7'/) by TF(TJJ)(X”)
and rF \(X) = UpenrF|, \(Xn) be the set of all relational terms of type
(r,7).

A relational hypersubstitution for algebraic systems of type (7, 7'/) = ((my)ser,
(n;)jes) is a mapping

o:{filieI}U{yljeJt = Wi(X)UrF, . (X)

with o(f;) € Wr(Xon,) and o(v;) € rF, ./ (Xn,). The set of all relational hyper-
substitutions for algebraic systems of type (7,7 ) is denoted by Relhyp(r,7 ). To
define a binary operation on this set, we define inductively the concept of a super-
position of terms S]7 : W, (X,,) x (W, (X,,))™ — W.(X,,) by the following steps.
For any t,t1,...,tm, € Wo(Xm), $1,---,8m € Wr(Xy),

(i) if t =x; for 1 < j <n, then SI*(t,s1,...,8m) := S;;

(ll) ift= fi(tla ‘e ,tmi), then

SI(ty 81y vy Sm) = [i( ST (t1, 815y Sm)s v s O (Emys S15- -y Sm))-

For any F = ~;(t1,...,tn;) € 7F;(Xm), we define the superposition of
relational terms R : (Wr(Xp) U rF (X)) X (Wr(Xn))™ — Wi (Xn) U
TF(T,T/)(X'”) by

(i) R (t, 81, y8Sm) = S0(t, 81, Sm),
(i) Ry (F, 81,5 8m) =7 (S (t1, 81,3 8m)s ooy STty 815+ 8m)).
Every relational hypersubstitution for algebraic systems ¢ can be extended to
a mapping o : W (X)UrF . (X) = W-(X)UrF_ - (X) as follows:

(i) olxg) :=x; for i € N;

(ii) o[fi(t1 .. tm,)] := STi(a(fi),0[t1],- ., 0[tm,]), where i € T and ty, ..., tn,
€ W,-(Xn), i-e., any occurrence of the variable xy, in o (f;) is replaced by the
term oltg], 1 < k < my;

(iii) G[y;j(s1.--,8n,)] :== Rn’(0(7;),G[s1],-..,C[sn,]), where j € J, s1,...,8,, €
W-(X,), i.e., any occurrence of the variable xj in o(y;) is replaced by the
term &[sg), 1 < k < n;.

We define a binary operation o, on Relhyp(r, T/) by ¢ o, a := & o o, where
o is the usual composition of mappings and o,a € Relhyp(T, 7',). Let o;4 be
the relational hypersubstitution which maps each mj;-ary operation symbol f;
to the term f;(x1,...,%m,) and maps each nj-ary relation symbol v; to the
relational term v;(x1,...,7,;). D. Phusanga and J. Koppitz [14] proved that
(Relhyp(T, 7-/)7 op, 0;q) 18 @ monoid.

In 2015, W. Wongpinit and S. Leeratanavalee [18] introduced the concept of
the i — most of terms as follows.
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Definition 2.2. ([18]) Let 7 = (m) be a type with an m-ary operation symbol
fit € Wiy(X) and 1 <i <m. An i —most(t) is defined inductively as follows
(i) If ¢ is a variable, then i — most(t) = t,
(ii) If t = f(t1,...,tn), where t1,...,t, € Wiy, (X), then i — most(t) :=
i — most(t;).

Example 2.3. Let 7 = (3) be a type, t = f(xs, f(x3,z2, 1), f(x2,21,21)).
Then, 1 — most(t) = x3, 2 — most(t) = 2 — most(f(rs,x2,71)) = z2 and 3 —
most(t) = 3 — most(f(xa,x1,21)) = 1.

Lemma 2.4. ([18]) Let s,t € W, (X). If j — most(t) = x € X, and
k — most(s) = xz;, then j — most(¢[s]) = x;.

The above lemma can be applied to any relational hypersubstitution for alge-
braic systems of type ((m), (n)), such as s,t € W,y (Xon) and F' € 7F (), (n)) (Xn)
if i — most(t) = x;, then i —most(cy r[s]) = j —most(s) where oy r is a relational
hypersubstitution of type (7,7') which maps f to a term ¢t and maps ~ to a rela-
tional term F'.

3. MAXIMAL UNIT-REGULAR ELEMENTS IN Relhyp((m), (n))

Let (1,7 ) = ((m),(n)) be a type with an m—ary operation symbol f, v be an
n—ary relation symbol, t € W,y (X,,) and F' € rF((m),n))(Xn). We denote
by o the set of the relational hypersubstitution of type (7,7") = ((m), (n))
which maps f to a term ¢ € W,,)(X,,) and maps v to a relational term F €
T E((m), () (Xn);
var(t) be the set of all variables occurring in the term ¢;
var(F) be the set of all variables occurring in the relational term F'.
Ry = {04, ~(s1,...s,) € Relhyp((m), (n)) : {i —most(s) : 1 <k <n=
va?"('y(sl, R Sn))}}’
Rr = {0f(t1,...tm)y(s1,sn) € Relhyp((m), (n)) = var(f(ts,... tm))
{t1,. .y tm},var(y(s1,...,8)) C{81,...,Sn}}
In [10], P. Kunama and S. Leeratanavalee showed that Ry U Ry is the set of
all unit-regular elements in Relhyp((m), (n)).
For any i € {1,...,m},j € {1,...,n}, we denote
Ry = {04, v(s1,.sn) € Relhyp((m),(n)) : {i —most(sg) : 1 < k < n =
var(v(sl, ) Sn))}}7
R := {04, +(s1,....sn) € Relhyp((m), (n)) : var(sy)| =1:1 <k <n};
R = {0 r(or oy € Relbyp((m), () [oar(y(s1, .- 50))| = 1}
Ry ={0f(tr,tm) v(51,.80) € Relhyp((m), (n)) :var(f(t1,... tm)) € {t1,..-,
tm},var(y(s1,...,8n)) C {s1,...,8n} and t; = s; = zj, jvar(f(t,...,tn)| =
lvar(y(s1,---,8m))| = 1};
Ry = {0f0t1, .. tm)v(s1,.isn) € Relhyp((m),(n)) 1 t; € X : Vi € {1,...,m},s; €
Xp:Vie{l,...,n}}

N

—_~

Let m,n be natural numbers, where m >n > 2, i€ {1,...,m},j € {1,...,n}.
We denote (MUR)’(Z.J) = Ry URYUR] and (MUR)" := Ry URY UR7. Firstly,

we recall some definitions used for the proof of our main theorems.
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Definition 3.1. ([1]) Let t € W,y (X,,)\ X, where t = f(t1,...,,,) for some

L1yt € Wiy (Xon). Let xgl) be a variable z; occurring in the Ith component of

t (from the left). Fori, = 1,...,m,let m;, : W(m)( m)\X = W) (Xm) be deﬁned

by m;,(f(t1,...,tm)) = t;;. The sequence of 2" in ¢ is denoted by seq ( ) If

i
xy) =m;, 0---om;, (t) for some k € N, then seq’(z 5)) = (i1, ,0k)-

Definition 3.2. ([8]) Let F' € rF(m),n))(Xn), where F' = 7(s1,...,5,) for
some s1,...,5, € W) (Xy,). Let xg-l) be a variable z; occurring in the I*" compo-
nent of F (from the left). For ¢; = 1, o, let i - TF((m),(n))(Xn) — W(n)(Xn)
be defined by ¢;, (F) = @i, (v(s1,...,8)) = s;,. For ix € {1,...,m}, let ¢, :
Wiy (Xn)\X — Wi,y (Xy) be defined by ¢, (f(t1,...,tm)) = ti,. The sequence of
xy) in F is denoted by seq” (x (l)). If x§l) = ¢, 0+ 0 i, 0 i, (F) for some k € N,

then seq® (x g)) = (i1, .., 0)-

We denote the set of all sequences of z; in term ¢ and x; in relational term F
by Seq'(x;) and Seq” (x;), respectively, i.e.

Seqt(z;) = {seq'(x )\ZEN};
Seq® (z;) = {seq” («}) | 1 € N}.

Example 3.3. Let (T, 7'/) = ((3), (2)) and t € W(3)<X3) , F e TF((S) 2))
where t = f(xa, f(xs, f(21, f(z2, x3,21), 22), 21), [ (f (23, 22, f(22,25,21)), 21
and F = y(f (22, f(21,22,21),21),21). Then, seq'(z{") = (2,2,1), seq’(z1”)

= (2,2,2,3), seqt(@\¥) = (2,3), seqt(x ”) = (3,1,3,3), seq'(z\”) = (3,2),
seq”(a1)) = (1,2,1), seq”(a1?) = (1,2,3), seq" (") = (1,3), seq"(x}") =
(2). So Seq'(z1) = {(2,2,1),(2,2,2,3),(2,3),(3,1,3,3),(3,2)} and Seq" (x1) =
{(1,2,1),(1,2,3)7(1,3),(2)}.

(X2)7
,73))

1
3),

Lemma 3.4. Lett = f(t1,...,tm), F =~(s1,...,8,) with var(t) = {xq,,...,
Tay }, var(F) = {zy,,..., 2}, and there exists a; € {1,...,m}, b € {1,...,n}
such that t,, = x4, and Sy, = Tb, - If x,, € var(ty) for some c € {1,...,k},
p € {1,....mMI\{dl,...,a.} and xp, € var(sy) for some d € {1,...,l}, q €
{1,...,n]\{¥),.... b}, where (p},...,pL.) € Seq'»(xq,) for some p},...,pl. € {1,

mi\lac} and (¢i,...,q;) € Seq®(xp,) 3 q1,-.-,q; € {1,...,n}\{b}, then
there exists o, g € Relhyp((m), (n)) such that oy g oy 0 F is not a unit-reqular
element in Relhyp((m), (n)).

Proof. Assume the condition holds. Since (p},...,p.) € Seq'?(z,, ) and (¢}, ...,
qy) € Seq®(xp,), then (p,py,...,p,) € Seq'(x,,) and (q,4i,...,q,) € SeqF(xbd).
Let p7,...,p;- be distinct for p,py,...,p; and ¢f, ..., g, be distinct for ¢,qy, ...,
qy- Choose oy, i € Relhyp((m), (n)), where u = f(uy,...,um), H = y(h1,...,hy)
such that w1 = zps,... u, = Tpr s Upgls- ooy U € W(m)( m)\{a } and hl =
Tgpsolg = Tqrshgyrso hn € Winy (Xn)\{zp, }. Then, u; # xq, for all i €
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{1,...,m} and h; # ay Vj € {1,...,n}. Consider

(Uu,H Or Ut,F)(f) = a'\u,H[f(tla e atm)]]

=Sy (f(ur, ... um), Ou 1], - - Ou [tm])
— fwn,.. . wm)
where w; = Sp (ui, Oy mlt1], - - - Ou i tm]),

and

(ou,r or 0, F) () = Cum[Y(51,. .-, 80)]]

= RZ(V(hla sy hn)agu,H[sl}’ cee 78U,H[Sn])
=7(z1,.--,%n)
where z; = Sy (hi, Gy, m[s1]s - - -, Ou,H[Sn])-

Since u; # Tay, Sj # Twy,, SO Wi # Ta,, 2j F T, Vi€ {1,...,m}, Vje{l,...,n}.
By Theorem 3.1., 3.2. of [8], we get o, € var(dy, ult]), zp, € var(G,, u[F]) such
that x,, € var(w,), where w, € W) (Xm)\ X, for somev € {1,...,m}and 3, €
var(z,), where z, € W,)(X,,))\X,, for some y € {1,...,n}. Hence, oy 5 oy 01 p ¢
R’x URy. So, 0y g o 0y, F is not a unit-regular element in Relhyp((m), (n)). O

Theorem 3.5. (MUR)'(M) is a unit-reqular submonoid of Relhyp((m), (n)).

Proof. We get that every element in (MUR)’ is unit-regular. Next, we show
that (MUR){; ; == Ry URYUR] is closed under o,. Let oy, 0u,n € (MUR)Y, ;).

Case 1: oy F € R;.. Then, t = x; € X, and F' = (51, ..., 8,) with var(F) =
{zp,, ..., 2zp, } such that i — most(sb;) =ap, VEk=1,...,1

Case 1.1: o,y € R;. Then, u = z; € X,, and H = v(hy,...,h,) with
var(H) = {x4,,...,%q,} such that i — most(hd;) = xg, for all k = 1,...,q.

Consider

(Ut,F Orp Uu,H)(f) = axi,F[Ii] = x;, and

(Ut,F Op Uu,H)('y) = RZ(F, 8:m,F[hl]; v 78131,F[hn])
=~(Sy(s1,i —most(hy),...,i —most(hy)),...,
Sy (sn,t —most(hy),...,i —most(hy)))
=(s1, ..., s),) where var(y(sy,...,s))) € {za,,...,%a,}
such that i — most(s&;ﬂ) =xq.;,k=1,...,q.
Case 1.2: 0, gy € RY. Then, u==z; € X,,, H="~(h1,...,h,) with
lvar(H)| = 1.

Consider
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(ot,F or 0y, 1) (Y) = Ry (F, 0y, rlhi], -0 Flhn])
=~v(Sy(s1,i —most(hy),...,i —most(hy)),...,
Sy (Sn,t —most(hy),...,i —most(hy)))
=(s},...,s),) where |var(y(sy,...,s,))| = 1.
Case 1.3: 0,1 € R;‘j. Then, u = f(u1,...,um), H =y(h1,..., hy) where u; =

xj = hj such that u, € Wiy (X )\ Xom; Yk € {1,...,mI\{7}, hie € Wiy (Xn)\ Xin;
Vk e {1,...,n}\{j} with vat(u) = var(H) = {z;}. Consider

(0t,F op 0w 1)(f) = Ouy,r[f(u1,...,um)] = x;, and
(01,F or 0w m)() = Ry (F,0x, plhal, ..., 0, plhn])

=~(Sr(s1,i — most(hy),...,i —most(hy)),. ..,
Sr(8n, i —most(hy),...,i —most(hy)))

=v(s},...,s),) where var('y(s’l, sy sh)) =4z}
Case 2: oy p € RY. Then, t =2; € X, and F = v(s1,...,s,) with
lvar(F)| = 1.

Case 2.1: o,y € R; . Then, u = z; € X,, and H = v(hy,...,h,) with
var(H) = {z4,,...,%q,} such that i —most(hy ) = wxg, for all k = 1,...,q.
k
Consider

(ot,p or ou,m)(f) = Ou,plz;] = ;, and
(Ut,F Or auyH)(’y) = RZ(F7 aIiA,F[hl]a s 7813“F[hn])
=~v(Sr(s1,i —most(hy),...,i — most(hy)),.
Sy (Sn,t —most(hy),...,i— most( )

=(s},...,s)) where |var(*y(s17 s =1
Case 2.2: o, g € RY. Then, u =z, € X,,, H =~(h1,...,hy,) with
|var(H)| = 1.
Consider
(01,7 0 0u,u)(f) = Oa, Fl;] = 2, and
(or,F oy ou,m)(7) = Ry (F,Go, p[M], - .., 00, p[hn])

=~v(Sr(s1,i —most(hy),...,i —most(hy)),...,
Sy (Sn,t —most(hy),...,i —most(hy)))
=(s},...,s)) where |var(y(s},...,s,))| = 1.
Case 2.3: oy,i € ;. Then, u = f(u1,...,um), H="(h1,..., hy) where u; =

xj = hj such that u, € Wiy (Xon)\Xom; Ve € {1,...,mI\{7}, hie € Wiy (Xn)\ Xin;
Vk e {1,...,n}\{j} with vat(u) = var(H) = {z;}. Consider

(Ut,F Op JuH)(f) = 8ﬂ7i7F[f(u17 co )] = x5, and
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(Ut,F Op Ju,H)(’Y) = RZ(F, awi,F[hl]; s 7am1,F[hnD
=~(Sy(s1,i —most(hy),...,i —most(hy)),...,
Sy (Sn, i —most(hy),...,i —most(hy)))
- 7(51’ ) n) where UQT(7(5/17 e n)) - {l’]}
Case 3: oy,p € R} . Then, t = flt, . tm), F=7(s1,...,8,) where t; = z; =
s; such that t, € Wiy (Xon)\Xim; Yk € {1,... ,mI\{j}, sk € Wiy (Xn)\Xn; Vk €
{1,...,n}\{j} with vat(t) = var(F) = {xz;}.
Case 3.1: o,y € R;. Then, u = z; € X,, and H = v(hy,...,h,) with
var(H) = {za4,,...,2q,} such that i — most(hd;) = xg, for all k = 1,...,q.
Consider

(01,7 o 0u,m)(f) = 0¢,pla;) = 25, and

(01, F 0r ou,m)() = Ry (F, G p[ha], - .., 01 p[hn])
=v(s},...,s,) where |var(y(sy,...,s,))| = 1.
Case 3.2: 0, g € RY. Then, u =2z, € X,,,, H="(h1,...,h,) with
|var(H)| = 1.
Consider

(01,7 o ou,m)(f) = 01, r[r;] = x5, and

(0t,F or 0u ) () = Ry (F, Gt r[hi], ..., 0t p[hn])
= ’Y(S/Ia L) {n) Where |UCL7’(’7(S/1, R} n))‘ - 1

Case 3.3: oy,m € Ry,. Then, u = flut, ..., um), H="(h1,..., hy) where u; =
x; = hj such that up, € Wiy (Xon)\Xom; VE € {1,...,mI\{j}, hie € Wiy (Xn)\ Xins
Vk e {1,...,n}\{j} with vat(u) = var(H) = {z;}. Consider

(Ut,F Op UuH)(f) = ET\t,F[f(ulv ey U]
=Sy (t,onr(uil, ..., 00F(xj], ..., 0 Ftm])
= f(ti,...,xj,...,tm)
where var(f(t1,...,x;,...,tm)) = {x;}, and

(Ut,F Or Uu7H)('7) = a157F['7(hla s hn)]

= RZ(F, 6}71:[/11], ey at7F[Ij], ce 76'\,5717[}7,”})
=7(s1,...,%j,...,8p) where var(y(s1,...,2;,...,8,)) = {z;}.
Therefore, (MUR)’(Z. ;) 18 a unit-regular submonoid of Relhyp((m), (n)). O

Theorem 3.6. (MUR)" is a unit-regular submonoid of Relhyp((m), (n)).

Proof. We get that every element in (MUR)” is unit-regular. Next, we show
that (MUR)" := R% U R¥ U R%. is closed under o,. Let oy p, 0, n € (MUR)".

Case 1: oy p € R%. Then, t = z; € X,, and F = y(s1,...,8,) with var(F) =
{zp,,...,zp, } and |var(s;)|=1Vj=1,...,n
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Case 1.1: o, g € R%. Then, v = z; € X,, and H = 7(hy,...,h,) with
var(H) = {xq4,,...,7q,} and |var(h;)| =1Vj=1,...,n. Consider
(01,7 or ou,m)(f) = Or, plz;] = 2; and
(01,7 or ou,m) () = Ry (F, 0, (M1, ..., Guy m[Rn])
=~(Sy(s1,4 —most(hy),...,i —most(hy)),. ..,
Sy (sp, i —most(hy),...,i —most(hy)))
=(s1,-..,s),) where var(y(sy,...,s))) € {zq,,...,%a,}
such that [var(s})| =1V j=1,...,n.
Case 1.2: 0, gy € RY. Then, u==z; € X,,,, H=~(h1,...,h,) with

|lvar(H)| = 1.
Consider
(0t,F or 0um)(f) = Ou, rlr;] = x5, and
(ot,F op oum)(7) = Ry (F, 0, p[h1], ..., 0, F[hn])

=~(S) (51,1 —most(hy),...,i —most(hy)),...,
S (8n,t —most(hy),...,i —most(hy)))

= v(s},...,s,,) where |var(y(s},...,s,))] = 1.

Case 1.3: o, g € Ry. Then, u= f(u1,...,Um); 4; € X, Vi=1,...,m and
H=~(h1,...,hy) ;h; € X,, Vi=1,...,n. Consider

(04,7 op 0w, 1)(f) = Oy, r[f (U1, .., Um)] = 0g, Flui] = z; € Xy, and

(0t,F or oum) () = By (F, 00, p[ha], ..., 00, p[hn])
= (S (s1,i —most(hy),...,i —most(hy)),...,
S (8n, i — most(hy),...,i —most(hy)))
=(s},...,s),) where var(y(s},...,s,)) C var(H)
such that [var(s})| =1V j=1,...,n.

Case 2: oy p € RY. Then, t =z, € X, and F = v(s1,...,s,) with
|var(F)| = 1.

Case 2.1: o, g € R%. Then, v = z; € X,,, and H = 7(h1,...,h,) with
var(H) = {zaq,,...,2q,} and |var(h;)| =1Vj =1,...,n. Consider

(o4,F o 0um)(f) = 0t pl2:] = x5, and
(ot,F or ouu)(y) = Ry (F, Gt plhal, ..., 00 r[hn])
=(s},...,s)) where |var(y(sy,...,s,))| = 1.

Case 2.2: 0, g € RY. The proof is similar to case 2.2 of Theorem 3.5.
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Case 2.3: 0,y € R5. Then, u= f(u1,...,uUm); u; € X, Vi=1,...,m and
H=~(hi,...,hyn) ;h; € X, Vi=1,...,n. Consider

(Ut,F Op O'u,H)(f) = b'\xi,F[f(uh <. 7Um)] = axi,F[Ui] =I5 € X, and

(ot,F or 0y, 1) (Y) = Ry (F, 0y, rlhi], .- 0 rlhn])
=~(Sy(s1,4 —most(hy),...,i —most(hy)),. ..,
Sy (sn, i —most(hy),...,i —most(hy)))
=v(s},...,s),) where |var(y(s},...,s,))| = 1.

r n

Case 3: oy p € RY}. Then, t = f(t1,...,tm) ; i € Xy Vi=1,...,mand F =
V(815 8n) 58 € Xp Vi = 1,...,n with var(t) = {zay,...,%a,}, var(F) =
{xbl,...,xbl}.

Case 3.1: o,y € R%. Then, v = z; € X, and H = 7(hy,...,h,) with
var(H) = {zq,,...,2q,} and |var(h;)| =1Vj=1,...,n. Consider

(01,5 or 0u.m)(f) = 0t plas] = x;, and
(0r,F or ou,)(V) = Ry (F, 00, p[ha], ..., 00, p[hn])
=~(Sn(s1,i — most(hy),...,i —most(hy)),. ..,
S (Sn, i —most(hy),...,i —most(hy)))
=(s},...,s),) where var(y(s},...,s,)) C var(H)
such that [var(s})| =1V j=1,...,n.
Case 3.2: o, gy € RY. Then, u==z; € X,,,, H="(h1,...,hy,) with
|var(H)| = 1.
Consider
(01,7 o 0u,u)(f) = 0¢,rlz;] = ;, and
(0t,F or oum) () = By (F, 0 p[h], ..., Gt r[ha])
=(s],...,s)) where |[var(y(s},...,s,))| = 1.

Case 3.3: oym € Ry. Then, u= f(u1,...,um); u; € X, Vi=1,...,m and
H=~(hi,...,hyn) ;h; € X, Vi=1,...,n. Consider

(01,7 or 0w ) (f) = Or,p[f(u1,. .., um)]
=S (t, 0 r[ua], ..., 0 F[Um])
= f(t1, - 1)
where t; € X,,, var(f(ty,...,t,.)) C var(u), and

(1.7 or 0um)(v) = 0rr[y(ha, .. )l
== RZ(F, 8t’F[h1}, P ,a\'t’F[hn])

=(s},...,s)) where var(y(s},...,s.,)) C var(H).
Therefore, (MUR)" is a unit-regular submonoid of Relhyp((m), (n)). O
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Theorem 3.7. (MUR)’(Z.J.) is a mazimal unit-regular submonoid of
Relhyp((m), (n)).

Proof. Let K be a proper unit-regular submonoid of Relhyp((m), (n)) such that
(MUR){, ;, € K C Relhyp((m), (n)). Let oy € K. Then, o5 is unit-regular.

Case 1: o r € R \R;, URY. Then, t = 2; € X, and F' = 7(s1,...,5,) with
var(F) = {z,,...,xp, } such that j — most(sb;) =, Vk=1,...,1. Choose
ouwr € R;. Then, v = 2; € X, and H = y(hy,...,hy,) with var(H) =
{xdl" B 7xdr}
such that ¢ — most(hd;) =wq, Vp=1,...,r. Consider

(0w or 01, 7)(f) = Ou,,m(z;] = 7, and

(UU7H Or UtF)(rY) = RZ(H7 &xi,H[Sl}, sty 837“1'[[3”])
=(S](h1,i — most(s1),...,1 —most(s,)), ...,
Sy (b, i —most(s1),...,7 —most(sy))).
Since @ — most(hy ) = x4, for allp=1,...,r, we have

x4, =i —most(ha,)

= Sy (i — most(hay ), i — most(s1),...,i —most(sn))
= Sy(xq,,i —most(s1),...,i —most(sy))

=1 —most(sa,).
Since u # xj, by Lemma 2.4., we have j —most(0y m[s4,]) # @ —most(sq,) = xq,.
Thus, oy, g o, 0 F is not unit-regular.

Case 2: oyp € Rr\Rj. Then, t = f(t1,...,tm) and F' = y(s1,...,5n)
such that var(f(ti,...,tm)) C {t1,...,tm} and var(y(si,...,$n)) € {s1,...,8n}.
Choose oy, € Ry, Then, u = flut,...,um), H="(h1,..., hy) where u; = z; =
hj such that ug € W(m) (Xm)\Xm, vk € {1, ce ,m}\{]}, hy € W(n)(Xn)\Xn,

VEk e {1,...,n}\{j} with vat(u) = var(H) = {z;}. Consider

(ou,m or 0t F)(f) = S (u, 0w mt1], - -, Ou, B [Em])

= f(ul,...,ul,) where |var(y(uy,...,u,,))| =1

If t; € W) (X)) \Xm, then uj, € Wiy (Xpn)\ X, for all & = {1,...,m}.
If t; € X;u\{z;}, then u} # x;. By Example 4 of [9], we have that it is not closed
into itself. Thus, oy, g or 0¢,F is not unit-regular.
Thus, ot r € (MUR)|; ;. Therefore, K C (MUR)(; ,,, and thus
_ /
K = (MUR)[, ;).

Theorem 3.8. (MUR)" is a mazimal unit-regular submonoid of
Relhyp((m), (n)).

Proof. Let K be a proper unit-regular submonoid of Relhyp((m), (n)) such that
(MUR)" C K C Relhyp((m), (n)). Let o4 p € K. Then, o, p is unit-regular.
Case 1: oy p € R\RY URY. Then, t = 2; € X, and F = (s1,...,8p)
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with var(F) = {xp,,...,xp, } such that i — most(sb;c) =, Vk=1,...,01. If
|var(F)| = 2, choose o, g € R}, such that i — most(u) = x; with j —most(s;) =
xp, VI€{L,...,n} and H = vy(x1,...,2,)}. If jvar(F)| > 2, choose o, g € R},
such that i — most(u) = x; with j — most(s;) = ap, 31 € {1,...,n} and H =
~v(z1,...,x,). Consider

(or,F or oum)(f) = 0w r[f(ur, ..., um)]
=z;, and
(0,7 0r ou,m) () = Ry (F. G plail, ..., O p[za])
=y(s],...,8).
Since i — most(u) = x;, so |var(j —most(s)));Vl=1,...,n| =1 < |[var(y(s},...,

'N|. Thus, oy o, 04 g is not unit-regular.

Case 2: 0, p € Rp\R}. By Lemma 3.4., we can choose o, g € R% such that
Ou,H Or Ot F is Not unit-regular.

Thus, oy, p € (MUR)"”. Therefore, K C (MUR)", and thus K = (MUR)". O

S

Corollary 3.9. (MUR)(; ;,(MUR)" are mazimal factorisable submonoids of

the monoid of the relational hypersubstitutions for algebraic systems of type

((m), (n)).
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