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ON COMPLEX TRINOMIAL ROOTS DISTRIBUTION

JIŘÍ JÁNSKÝ and PETR TOMÁŠEK

Abstract. The paper deals with a certain trinomial with two strictly complex coef-
ficients. The root locus technique is utilized to obtain a distribution of roots with
respect to a unit circle in the complex plane. A number of roots inside the unit
disk is described in a relation with the two parameter values. Several appropriate
graphs illustrate the trinomial roots distribution in particular cases.

1. Introduction

We consider a trinomial with two complex coefficients
Tk,m(λ) = λk + iaλk−m + ib, (1.1)

where a, b are real parameters and k > m, k, m ∈ N. Our aim is to analyze the de-
pendence of the number of roots of (1.1) with a modulus lower than one, equal to
one and greater than one on the pair of parameters (a, b). We call these numbers
root location numbers, and we denote them as rin, ron and rout , respectively. This
notation reflects the trinomial Tk,m roots position with respect to a unit disk in
the complex plane. We also introduce a pair of non-negative integers rin − rout for
the root location description with respect to the pair of parameters (a, b). This
efficient notation modifies the one used in [2], where a root location of a trinomial
P (λ) = λk + aλk−m + b with two strictly real coefficients was analyzed. We em-
phasize that the trinomial (1.1) has strictly complex coefficients. The trinomial
Tk,m(λ) can be considered as a characteristic polynomial of the difference equation

y(n + k) + iay(n + k − m) + iby(n) = 0, n = 0, 1, 2, . . . .

If all the roots of the characteristic polynomial lie inside a unit disk in the complex
plane, then asymptotic stable solutions of this difference equation occur. We
analyze a root distribution of (1.1) in a more general sense in the paper, not
only as an investigation of the asymptotic stability of the corresponding difference
equation.

The considered trinomial (1.1), whose unimodal roots we are going to investi-
gate, is a special case of polynomial

P (λ) = λk − aλk−m − b (1.2)
with general complex coefficients a, b ∈ C. The conditions laid on coefficients a, b,
which guarantee that the polynomial (1.2) has all its roots with the modulus lower
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than one, are equivalent to the asymptotic stability conditions for the difference
equation

y(n + k) + ay(n + k − m) + by(n) = 0, n = 0, 1, 2, . . . .

Many papers dealing with the asymptotic stability of difference equations ana-
lyze various special cases of the polynomial (1.2). One of the first papers dealing
with this issue was [12], where the asymptotic stability of difference equations was
studied. The necessary and sufficient conditions were derived for the polynomial
P (λ) = λk − λk−1 + b, b ∈ R to have all its roots inside the unit disk. An analysis
of the roots distribution with respect to the unit circle in the complex plane is
performed here using the so-called boundary locus technique. Such analysis pro-
cedure was also utilized in other later works (e.g., [10]). The result in [12] was
later generalized in [11], where the polynomial P (λ) = λk −aλk−1 +b, a, b ∈ R was
studied. Next particular generalization came in [8], where the roots of trinomial
P (λ) = λk −λk−m+b, b ∈ R were investigated. Polynomial P (λ) = λk +aλk−m+b,
a, b ∈ R was analyzed in [6] in a similar sense. The necessary and sufficient con-
ditions for polynomial P (λ) = λk − aλ + b, a, b ∈ R to have all the roots inside
the unit disk were derived in [7]. Paper [13] deals with the stability of solutions
of a difference system. The necessary and sufficient conditions are introduced for
the roots of polynomial P (λ) = λk − aλk−1 + ib, a, b ∈ R to be inside the unit disk
in the complex plane.

The necessary and sufficient conditions were formulated in the above-mentioned
papers in such a form where there is a need for solving a nonlinear equation
to determine the boundary of a region in the (a, b) plane within which, for all
pairs (a, b), the roots of the investigated polynomial lie inside the unit disk in the
complex plane. An analytical solution can be found only in very simple particular
cases. In general, it can only be solved numerically. Other proof procedures were
derived later. They lead to other formulations of these conditions. We mention
paper [9] dealing with the roots of P (λ) = λk − aλk−1 − b, a, b ∈ C, where the
conditions were formulated in a different sense. Similar approaches were also
considered in [3–5].

Another proof procedure was considered in [10], where the polynomial P (λ) =
λk − aλk−m − b, a, b ∈ R was analyzed. In that paper the conditions were formu-
lated via curves which form the boundary of a region in the (a, b) plane, where
all the roots of the polynomial lie inside the unit disk in the complex plane. The
curves are given in a parametric form. We emphasize that condition formula-
tions are significantly different in papers [9], [10] and [11]. Moreover, the proof
of their equivalence is a very difficult task. We mention a recent paper [2], where
a connection of the main results introduced in [10] and [5] was discussed. Finally,
we mention a remarkable paper [1], which recalls a result related to the roots
distribution of (1.2) with respect to unit modulus from 1908.

2. Roots distribution

In this section, we determine the boundaries of regions in the (a, b) plane, in which
the root location numbers rin and rout are preserved (ron = 0). The boundary
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curves are determined by the existence of unimodal roots (ron > 0) with respect
to a continuous dependence of the roots of the trinomial (1.1) on parameters a, b.

Theorem 2.1. Let a, b ∈ R, k, m ∈ N, k > m be coprime. Then, the trinomial
(1.1) has a unimodal root if and only if

a = cos(kω)
sin((k − m)ω) , b = − cos(mω)

sin((k − m)ω) , ω ∈ Is, (2.1)

Is :=
(

(s − 1)π
k − m

,
sπ

k − m

)
, s = m − k + 1, m − k + 2, . . . , k − m,

and, in the case of both k and m odd, the following holds

b = a(−1)1+(k−m)/2 − 1 or b = a(−1)1+(k−m)/2 + 1. (2.2)

Proof. We consider a root of (1.1) with a unit modulus λ∗ = exp{ωi}, where
ω ∈ (−π, π]. Substitution of such a root to (1.1) gives

Tk,m(eωi) = ekωi + iae(k−m)ωi + ib = 0.

We use the Euler formula and we obtain

cos(kω) − a sin((k − m)ω) = 0, (2.3)
sin(kω) + a cos((k − m)ω) + b = 0 (2.4)

considering the real and the imaginary parts separately. The above system of
equations defines a set of curves in the (a, b) plane. When a point (a, b) of these
curves is considered, a unimodal root of (1.1) occurs. The curves also comprise
the boundaries of regions with a various number of roots inside and outside of the
unit disk in the complex plane. To get a more convenient formulation of these
curves we consider

ω ∈
k−m⋃

s=m−k+1
Is and ω ∈

{
sπ

k − m

}k−m

s=m−k+1
.

In the first case, we divide (2.3) by sin((k − m)ω). Together with (2.4) it gives
(2.1). However, in the case of ω = sπ/(k − m), it is impossible. For these values
of ω we must take into account the parity of exponents k and m. We omit the
case of both k and m even, which is in contradiction to the assumption of their
coprimality. It is obvious that we have sin((k − m)ω) = 0 and (2.3), (2.4) turn to
cos(kω) = 0 and cos(mω)=0. Thus, kω = π/2 + pπ, mω = π/2 + qπ, p, q ∈ Z.
Since ω = (π/2+pπ)/k = (π/2+qπ)/m, we get equation (k−m)π/2 = (mp−kq)π.
This can be satisfied only for (k − m) even. Thus, both kandm must be odd. The
only two possibilities for (2.3) and (2.4) to be simultaneously satisfied is in the
case of ω = ±π/2. Then, (2.3) is fulfilled trivially and (2.4) defines the straight
parallel lines (2.2). □

Notation. We denote by Cs the curves given by (2.1) for ω ∈ Is, s = m−k+1,
m − k + 2, . . . , k − m. Furthermore, we denote by C− and C+ the straight lines
given by (2.2) for ω = −π/2 and ω = π/2, respectively.
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Remark 2.2. The straight lines given by (2.2) can occur only in the case of
k odd and (k − m) even. Then, there exist curves given by (2.1), whose endpoints

[a, b] =
[

k

k − m
(−1)(k−m)/2 sin(kπ/2), −m

k − m
(−1)(k−m)/2 sin(mπ/2)

]
,

[a, b] =
[

−k

k − m
(−1)(k−m)/2 sin(kπ/2), m

k − m
(−1)(k−m)/2 sin(mπ/2)

]
are located on the straight lines (2.2). Both the points arise from finite limits
for the pair (a, b) given by (2.1) as ω → −π/2 and as ω → π/2, respectively.
Moreover, in this case, two unimodal roots are located on curves (2.1) since they
are passed twice along the considered ω ∈ (−π, π].

Remark 2.3. The system of curves Cs, s = m − k + 1, m − k + 2, . . . , k − m
(together with C− and C+ in the case of k, m odd) is point symmetric with the
center of symmetry in the point [a, b] = [0, 0]. This follows immediately from (2.1),
since expressions a, b are odd functions of parameter ω. It is obvious that parallel
straight lines (2.2) have the same property, too.

The same line of arguments as in the proof of Theorem 2.1 gives the next
assertion about the existence of roots with a general modulus r > 0.

Theorem 2.4. Let a, b ∈ R, k, m ∈ N, k > m be coprime. Then, the trinomial
(1.1) has a root with modulus r > 0 if and only if

a = rm cos(kω)
sin((k − m)ω) , b = −rk cos(mω)

sin((k − m)ω) , ω ∈ Is, (2.5)

Is :=
(

(s − 1)π
k − m

,
sπ

k − m

)
, s = m − k + 1, m − k + 2, . . . , k − m,

and, in the case of both k and m odd, the following holds

b = ark−m(−1)1+(k−m)/2 − rk or b = ark−m(−1)1+(k−m)/2 + rk.

Next, we present another assertion which formulates the location of unimodal
roots of Tk,m(λ) in the (a, b) plane.

Theorem 2.5. Let k, m be positive integers such that k > m. If λ∗ is a root of
(1.1) with |λ∗| = 1, then either (2.2) holds or

|a| + |b| > 1, |a| − 1 < |b| < 1 + |a|,

k arcsin b2−a2−1
2|a| + m arcsin a2−b2−1

2|b| = sπ for suitable s ∈ Z.

Proof. Let polynomial Tk,m have a unimodal root λ = exp(ωi), ω ∈ (−π, π].
We consider parameters a, b of (1.1) as a = |a| exp(iθa) and b = |b| exp(iθb), where
θa, θb ∈ {0, π}. Then, we obtain the trinomial (1.1) in the form

exp(ikω) + i|a| exp(i(k − m)ω + iθa) + i|b| exp(iθb) = 0.

Considering the real and the imaginary parts separately, we get
cos(kω) − |a| sin((k − m)ω + θa) − |b| sin(θb) = 0, (2.6)
sin(kω) + |a| cos((k − m)ω + θa) + |b| cos(θb) = 0. (2.7)
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Although the term sin(θb) in (2.6) has zero value, it will be useful to be considered
in this form also in the following steps. We rewrite (2.6), (2.7) in an equivalent
sense to

|a| sin((k − m)ω + θa − θb) = cos(kω − θb),
|b| sin((k − m)ω + θa − θb) = − cos(mω − θa).

The sign of the term sin((k − m)ω + θa − θb) splits the proof into the next three
possibilities.

I) Let sin((k−m)ω+θa −θb) > 0. Then, cos(kω−θb) > 0 and cos(mω−θa) < 0.
But this is satisfied if and only if

kω − θb ∈
(

−π

2 + pπ,
π

2 + pπ
)

, mω − θa ∈
(

−π

2 + qπ,
π

2 + qπ
)

(2.8)

for a suitable p even and q odd. Now, we rearrange the system (2.6), (2.7) in two
different ways:

a) We isolate the term |a| sin((k−m)ω+θa) from the first equation and the term
|a| cos((k − m)ω + θa) from the second one. Then, we square both the equations
and sum them to obtain

sin(kω − θb) = a2 − b2 − 1
2|b|

. (2.9)

b) We isolate the term |b| sin(θb) from the first equation and the term |b| cos(θb)
from the second one. Then, we square both the equations and sum them to obtain

sin(mω − θa) = b2 − a2 − 1
2|a|

. (2.10)

Equations (2.9) and (2.10), using (2.8), give

sin(kω − θb − pπ) = a2 − b2 − 1
2|b|

, sin(qπ − (mω − θa)) = b2 − a2 − 1
2|a|

.

Applying the appropriate inverse functions, we get

kω − θb − pπ = arcsin a2 − b2 − 1
2|b|

, qπ − mω + θa = arcsin b2 − a2 − 1
2|a|

.

Elimination of the parameter ω gives

k arcsin b2 − a2 − 1
2|a|

+ m arcsin a2 − b2 − 1
2|b|

= L,

where L = (kq −mp)π +kθa −mθb. Since there exists ℓ ∈ Z such that kθa −mθb =
ℓπ, we can write L = (kq − mp + ℓ)π. Thus, L = sπ for a suitable s = kq − mp + ℓ,
s ∈ Z.

II) Let sin((k − m)ω + θa − θb) < 0. Then, an analogous procedure as in the
previous case gives the theorem assertion.

III) Let sin((k − m)ω + θa − θb) = 0. Then, an analogous procedure as in the
proof of Theorem 2.1 gives (2.2). □

So far, we have made some considerations about the location of unimodal roots.
Now, we turn to an analysis to determine the number of roots with a modulus lower
and greater than one. I.e., we try to analyze how the numbers of roots rin and
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rout are set for various regions bounded by curves Cs, and also by C− and C+ in
the case of k, m odd. We start with the obvious fact that the area in the (a, b)
plane, which contains the open vertical line segment AB, A = [0, −1], B = [0, 1],
determines that all the roots of Tk,m are within the unit disk in the complex plane
(rin = k, rout = 0). This follows immediately from Tk,m = λk + ib considering
a = 0 and b ∈ (−1, 1). On the other hand, the regions in the (a, b) plane, which
contain vertical half-lines a = 0, b ∈ (−∞, −1) and a = 0, b ∈ (1, ∞), determine
the case when all the roots of Tk,m have the modulus greater than one (rin = 0,
rout = k) for an analogous reason. Similarly, in the horizontal direction we have
the following roots distribution: the region which contains the open line segment
DE, D = [−1, 0], E = [1, 0], determines that all the roots of Tk,m are within
the unit disk in the complex plane (rin = k, rout = 0). This follows immediately
from Tk,m = (λm + ai)λk−m considering a ∈ (−1, 1) and b = 0. On the other
hand, the regions in the (a, b) plane which contain half-lines a ∈ (−∞, −1), b = 0
and a ∈ (1, ∞), b = 0 determine the case of Tk,m with root location numbers
rin = k − m, rout = m for an analogous reason. Thus, we have information
about these four important particular cases. To determine the settings of the
pair rin, rout in other regions, we can utilize Theorem 2.4. If we consider a small
perturbation δ of the unit modulus r = 1 + δ, δ > 0, we find a direction where,
originally, the unit modulus increases its value (we can consider similar procedure
also for δ < 0). In coincidence with (2.5), one can say that for a perturbation
δ > 0 the considered direction points away from the plane origin in the case of
curves Cs. An appropriate change of the position of the straight lines C− and C+
is also illustrated in the case of T3,1 in Example 3.2. The greater the values of
coprimes k, m, the more difficult the analysis is and an analytical description of
each region remains to be a great challenge. Nevertheless, plotting the curves Cs,
C− and C+ for a particular case of k, m, we can determine the regions via the
theorems introduced above. Much more about this issue becomes clear after its
demonstration on particular examples in the following section.

3. Examples

In this section, we present particular cases of the trinomial Tk,m and we describe
its unimodal roots dislocation in the parameter plane (a, b). The curves Cs and
occasionally parallel straight lines form the boundaries of regions with constant
numbers of roots inside or outside of the unit disk. These curves are shown as
solid bold lines in all the figures presented below. In addition, there are also
shown dotted curves, which represent pairs (a, b) when the perturbed root λ∗

p,
|λ∗

p| = 1.05 of Tk,m exists (unit modulus perturbation δ = 0.05). It shows in which
direction from the solid curves rout increases and rin decreases in accordance with
the continuous dependency of roots on the parameter pairs (a, b). All the figures
also document the symmetry property mentioned in Remark 2.3.

Example 3.1. We consider the trinomial
T2,1(λ) = λ2 + iaλ + ib.

Distribution of the roots of T2,1 with respect to modulus one in the parameter
plane (a, b) is shown in Figure 1. Only two boundary curves C0, C1 defined by
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(2.1) are present, since we have only I0 = (−π, 0) and I1 = (0, π) according to
Theorem 2.1. They only split the whole plane into five distinct regions, which
were the subjects of consideration at the end of the previous section. The pairs
rin − rout are specified for these regions. As we can see, the dotted lines for the
perturbed unimodal roots with modulus r = 1.05 illustrate the direction from the
solid line in which rout is increased and rin is decreased.

2 1 0 1 2
a

2

1

0

1

2

b

0-2

0-2

2-01-1 1-1

C0 C1

Figure 1. Roots distribution for T2,1(λ), rin − rout

Example 3.2. We consider the trinomial

T3,1(λ) = λ3 + iaλ2 + ib.

Roots distribution in the parameter plane (a, b) is shown in Figure 2. The area
where when all the roots are inside the unit disk is located around the origin of
the plane. There are four curves C−1, C0, C1, C2 by (2.1) with parameter ω in
I−1 = (−π, −π/2), I0 = (−π/2, π), I1 = (π, 3π/2), I2 = (3π/2, π), respectively.
As we can see, the curves C−1, C0 are the same and C1, C2 also comprise one
curve. According to Remark 2.2 they have endpoints [3/2, 1/2] and [−3/2, −1/2]
on appropriate straight lines C− and C+, respectively. Again, the dotted lines
mean the analogous curves for roots with modulus r = 1.05.

Example 3.3. We consider the trinomial

T3,2(λ) = λ3 + iaλ + ib.

Roots distribution in the parameter plane (a, b) is shown in Figure 3. The area
where all the roots are inside the unit disk is located around the origin of the
plane. Only two boundary curves, C0, C1, defined by (2.1) are presented, since we
have only I0 = (−π, 0) and I1 = (0, π) for ω. They split the whole plane into nine
distinct regions in this case. We again introduce the dotted perturbation lines for
the roots of T3,2 with modulus r = 1.05 to document the appropriate changes in
the pairs rin − rout .
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2

0

2

4

b

0-3

0-3

3-02-1 2-1

1-2

1-2
C

C +

C

C +

C 1, C0

C1, C2

Figure 2. Roots distribution for T3,1(λ), rin − rout

2 1 0 1 2
a

2

1

0

1

2

b

0-3

0-3

3-01-2 1-2

2-1

2-1

2-1

2-1

C0C0

C1 C1

Figure 3. Roots distribution for T3,2(λ), rin − rout

Example 3.4. We consider the trinomial

T4,1(λ) = λ4 + iaλ3 + ib.

Roots distribution in the parameter plane (a, b) is shown in Figure 4. Six boundary
curves Cs, s = −2, −1, . . . , 3, defined by (2.1) are presented, which split the plane
into thirteen distinct regions. We introduce the dotted perturbation lines for roots
of T4,1 with modulus r = 1.015 to document the appropriate changes in the pairs
rin − rout .

Example 3.5. We consider the trinomial

T4,3(λ) = λ4 + iaλ + ib.
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2 1 0 1 2
a

2

1

0

1

2

b

0-4

0-4

4-03-1 3-1

2-2 2-2

2-2 2-2

1-3 1-3

1-3 1-3

C 2

C 2

C 1

C 1

C 1

C0

C0

C1

C1

C2

C2

C2

C3

C3

Figure 4. Roots distribution for T4,1(λ), rin − rout

Roots distribution in the plane (a, b) is shown in Figure 5. Two boundary curves,
C0, C1, defined by (2.1) are presented. They split the plane into thirteen distinct
regions. We again introduce the dotted perturbation lines for the roots of T4,3 with
modulus r = 1.015 to document the appropriate changes in the pairs rin − rout .

2 1 0 1 2
a

2

1

0

1

2

b 3-13-1

0-4

0-4

4-01-3 1-3

2-2 2-2

2-2 2-2

C0

C0

C1

C1

Figure 5. Roots distribution for T4,3(λ), rin − rout

4. Final remarks

The paper gives a tool for a location analysis of the roots of trinomial (1.1) with
respect to the unit modulus. We derived a complete description of curves Cs,
s = m − k + 1, m − k + 2, . . . , k − m and C−, C+ in Theorem 2.1, which serve
as the boundaries of regions where the root location numbers rin and rout for
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the trinomial Tk,m are constant. We introduced an original concept of perturbed
curves which correspond to roots with modulus r = 1 ± δ, δ > 0 sufficiently small.
They enable us to determine the change of the root location numbers if we cross
the boundary curve from one region to a neighboring one. Moreover, Theorem 2.4
gives a generalized result for a possible analysis considering any positive modulus
r of the trinomial (1.1) roots. The approach presented in the paper can be utilized
for an analysis of other polynomials.

Acknowledgment. The authors sincerely thank the reviewer for valuable
suggestions and comments that have improved the quality of the paper.
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