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TOPOLOGIES INDUCED BY GRAPH METRICS
ON THE VERTEX SET OF GRAPHS

K. LALITHAMBIGAI, PAULRAJ GNANACHANDRA and SAEID JAFARI

Abstract. This paper presents a method of constructing topologies on the vertex set
of a graph G induced by open balls with respect to the graph metric viz. geodesic
distance, detour distance, circular distance and circular D-distance on the vertex set
of G. Also, this paper explores the topologies induced by eccentric neighbourhoods
of vertices of a graph and presents the nature of topologies generated by various
graph metrics on the vertex set of some standard graphs.

1. Introduction

Graphs are used for modelling multiple relations and processes in computer, en-
gineering, physical and biological sciences. The application of distance in graphs
can be found in image processing, optimization, networking, pattern recognition
and navigation. Distance metrics are a key part of several machine learning algo-
rithms. A number of machine learning algorthims, supervised or unsupervised, use
distance metrics to know the input data pattern in order to make any data based
decision. These distance metrics are used in both supervised and unsupervised
learning, generally to calculate the similarity between data points.

A metric space is a non-empty set together with a metric on the set. The
metric is a function that defines the concept of distance between any two members
of the set, which are usually called points. A metric on a space induces topological
properties like open and closed sets which lead to the study of more abstract
topological spaces. The metric is used to generate a subbasis for a topology, the
metric topology. From this, all the usual objects in a topology are easily defined.
The topologies generated by an effective distance metric can be used to improve
the performance of a machine learning model. Diesto and Gervacio [5] constructed
a topology on a vertex set of graphs using neighbourhoods. Also, it was further
studied in [7] and [9]. Nianga and Canoy in [6,10,11] used the hop neighbourhoods
to generate a topology on a vertex set of graphs and studied the properties of
topologies induced by some unary, binary operations on graphs.

A biological system is a complex network which connects several biologically
relevant entities. The myriad components of a biological system and their inter-
actions are best characterized as networks and they are mainly represented as
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graphs. Many topological structures on the vertex set can be generated by dif-
ferent relations on the vertex set of graphs. The dependence scales of subgraphs
computed from the topology generated by graphs are used to detect, diagnose and
monitor diseases. Graph distance plays a vital role in the study of a graph model
of blood circulation in the human heart and urinary system.

The significance of circular distance can be viewed in logistic management. For
instance, a salesman who delivers goods from a source to various destinations,
takes a long trip so that he can cover as many places as he can on his way. On his
return, he selects the shortest way to his source so as to minimize the time and
fuel consumption. In his journey from source to destination and from destination
to source, he chooses the shortest path and the longest path.

In many real life situations, in addition to the length of the path, calculation of
the degree of every vertex of a graph is of much importance. For instance, a van
delivering goods to various places has to stop at each point and deliver the goods.
Regarding the points as vertices and the number of goods delivered as the degree
of vertices, it has to travel and deliver the goods at all delivery points, by taking
it as a detour D-distance and return to source, by taking it as a D-distance. It
helps in saving time and fuel usage.

In this direction, this paper explores some methods of generating topologies via
graph metrics which ensure efficient decision making.

2. Preliminaries

The definitions stated in this section are defined by referring to the references
[1–4].

In a graph, the degree of a vertex v denoted by deg(v) is defined as the number
of vertices adjacent to v. A complete graph on n vertices denoted by Kn is a simple
undirected graph in which every pair of distinct vertices is connected by a unique
edge. A path graph on n vertices denoted by Pn is a graph whose vertices can
be listed in the order v1, v2, . . . , vn such that the edges are {vi, vi+1}, where i =
1, 2, . . . , n − 1. A cycle graph on n vertices denoted by Cn is a graph that consists
of a single cycle. A wheel graph on n vertices denoted by Wn, n ⩾ 4 is a graph
formed by connecting a single vertex to all vertices of a cycle of length n − 1 and
that single vertex is referred to as the centre vertex of Wn. A star graph St1,n is
a special type of graph in which n vertices have degree 1 and a single vertex has
degree n and that single vertex is referred to as the central vertex of St1,n.

A path in a graph is a sequence of vertices in which each vertex is connected
by an edge to the next. The path length corresponds to the number of edges in
the path. The length of the shortest path between two vertices x and y is called
the distance between x and y, which is denoted by d(x, y). A metric space defined
over a set of vertices in terms of distances in a graph defined over the vertex set
is called a graph metric. The vertex set and the distance function form a metric
space if and only if the graph is connected. In a connected graph G, the geodesic
distance d(a, b) between two distinct vertices a and b is defined as the length of
the shortest path between a and b and zero, if a = b; the detour distance D(a, b)
between distinct vertices a and b is the length of the longest path between a and
b and zero, if a = b. The maximum geodesic distance (detour distance) to any
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other vertex from the vertex a is defined as the eccentricity ed(a) (eD(a)) of the
vertex a. The geodesic radius rd(G) (detour radius rD(G)) and geodesic diameter
diamd(G) (detour diameter diamD(G)) of a graph G is defined as

rd(G) = min{ed(a) : a ∈ V (G)} (rD(G) = min{eD(a) : a ∈ V (G)}),
diamd(G) = max{ed(a) : a ∈ V (G)} (diamD(G) = max{eD(a) : a ∈ V (G)}).
P. L. N. Varma et al. [12,13] introduced D-length of a path, D-distance between

vertices, detour D-distance between vertices in a connected graph.
If P is a path connecting the vertices a and b, then the D-length of P is defined

as Dl(P ) = l(P ) + deg(a) + deg(b) +
∑

x deg(x), where the summation is taken
over all the internal vertices x of P ; the geodesic D-distance between the two
distinct vertices a and b is defined as dD(a, b) = min{Dl(P )}, where the minimum
is taken over all paths P connecting a and b and zero, if a = b, detour D-distance
between the two distinct vertices a and b is defined as DD(a, b) = max{Dl(P )}
where maximum is taken over all paths P connecting a and b and zero, if a = b.

Janagam Veeranjaneyulu and Peruri Lakshmi Narayana Varma [8] defined cir-
cular distance cd(a, b) between two distinct vertices a and b in a connected graph
as the sum of the geodesic distance d(a, b) and the detour distance D(a, b) and
the circular D-distance cdD(a, b) as the sum of the geodesic D-distance between
the vertices a and b and the detour D-distance between the vertices a and b. The
maximum circular D-distance to any other vertex from the vertex a is defined as
the circular D-eccentricity eD

c (a) of the vertex a. The circular D-radius rD
cd(G) and

circular D-diameter diamD
cd(G) of a graph G is defined as

rD
cd(G) = min{eD

c (a) : a ∈ V (G)}, diamD
cd(G) = max{eD

c (a) : a ∈ V (G)}.

Throughout this paper, graphs under discussion are connected nontrivial simple
graphs.

3. Topologies induced by open balls

This section explores the method of generating topologies induced by open balls
with respect to graph metrics viz. geodesic distance, detour distance, circular
distance and D-circular distance.

From the definitions, it is easy to prove that geodesic distance d(x, y), detour
distance D(x, y), circular distance cd(x, y) and circular D-distance cdD(x, y) are
metrics on V (G). With respect to each of these metrics, open balls can be defined,
through which the subbasis for topologies on the vertex set of G can be found.

Let dis(x, y) denote any of the above mentioned distance metric. Then, the
open ball and the corresponding subbasis for topologies can be defined as follows:

Definition 3.1. In a graph G, the open balls with respect to metric dis are
defined as

Bdis(x, rdis(G)) = {y ∈ V (G) : dis(x, y) < rdis(G)}.

The definition of dis(x, y) imparts that x ∈ Bdis(x, rdis(G)) for every x ∈ V (G).
Hence, the non empty collection of open balls Bdis(x, rdis(G)) forms a subbasis
for a topology τdis on the vertex set of G.

Example 3.2. Consider the following graph.
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d(1, 2) = d(2, 1) = 1, d(1, 3) = d(3, 1) = 2, d(1, 4) = d(4, 1) = 2,

d(1, 5) = d(5, 1) = 3, d(1, 6) = d(6, 1) = 4, d(2, 3) = d(3, 2) = 1,

d(2, 4) = d(4, 2) = 1, d(2, 5) = d(5, 2) = 2, d(2, 6) = d(6, 2) = 3,

d(3, 4) = d(4, 3) = 1, d(3, 5) = d(5, 3) = 1, d(3, 6) = d(6, 3) = 2,

d(4, 5) = d(5, 4) = 2, d(4, 6) = d(6, 4) = 3, d(5, 6) = d(6, 5) = 1,

ed(1) = 4, ed(2) = 3, ed(3) = 2, ed(4) = 3, ed(5) = 3, ed(6) = 4, rd(G) = 2,

Bd(1, rd(G)) = {1, 2}; Bd(2, rd(G)) = {1, 2, 3, 4}, Bd(3, rd(G)) = {2, 3, 4, 5},

Bd(4, rd(G)) = {2, 3, 4}, Bd(5, rd(G)) = {3, 5, 6}, Bd(6, rd(G)) = {5, 6}.

Figure 1 illustrates the subbasis for τd in which the vertices joined under differently
colored lines form the elements of the subbasis for τd.

1 2 3

4 5 6

Figure 1

Subbasis for τd = {{1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5}, {2, 3, 4}, {3, 5, 6}, {5, 6}}. Basis for
τd = {∅,{1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5}, {2, 3, 4}, {3, 5, 6}, {5, 6}, {2}, {3}, {3, 5}, {5}},
τd = {{∅,{1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5}, {2, 3, 4}, {3, 5, 6}, {5, 6}, {2}, {3}, {3, 5}, {5},
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{1, 2, 3, 4, 5}, {1, 2, 3, 5, 6}, {1, 2, 5, 6}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}},
D(1, 2) = D(2, 1) = 1, D(1, 3) = D(3, 1) = 3, D(1, 4) = D(4, 1) = 3,

D(1, 5) = D(5, 1) = 4, D(1, 6) = D(6, 1) = 5, D(2, 3) = D(3, 2) = 2,

D(2, 4) = D(4, 2) = 2, D(2, 5) = D(5, 2) = 3, D(2, 6) = D(6, 2) = 4,

D(3, 4) = D(4, 3) = 2, D(3, 5) = D(5, 3) = 1, D(3, 6) = D(6, 3) = 2,

D(4, 5) = D(5, 4) = 3, D(4, 6) = D(6, 4) = 4, D(5, 6) = D(6, 5) = 1,

eD(1) = 5, eD(2) = 4, eD(3) = 3, eD(4) = 4, eD(5) = 4, eD(6) = 5, rD(G) = 3,

BD(1, rD(G)) = {1, 2}, BD(2, rD(G)) = {1, 2, 3, 4},

BD(3, rD(G)) = {2, 3, 4, 5, 6}, BD(4, rD(G)) = {2, 3, 4},

BD(5, rD(G)) = {3, 5, 6}, BD(6, rD(G)) = {3, 5, 6}.

Figure 2 illustrates the subbasis for τD in which the vertices joined under differently
colored lines form the elements of the subbasis for τD.

1 2 3

4 5 6

Figure 2

Subbasis for τD = {{1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {3, 5, 6}, {3, 5, 6}}. Ba-
sis for τD = {∅, {1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {3, 5, 6}, {2}, {3}}, τD =
{∅,{1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {3, 5, 6}, {2}, {3}, {2, 3}, {1, 2, 3, 4, 5, 6},
{2, 3, 5, 6}},

cd(1, 2) = cd(2, 1) = 2, cd(1, 3) = cd(3, 1) = 5, cd(1, 4) = cd(4, 1) = 5,

cd(1, 5) = cd(5, 1) = 7, cd(1, 6) = cd(6, 1) = 9, cd(2, 3) = cd(3, 2) = 3,

cd(2, 4) = cd(4, 2) = 3, cd(2, 5) = cd(5, 2) = 5, cd(2, 6) = cd(6, 2) = 7,

cd(3, 4) = cd(4, 3) = 3, cd(3, 5) = cd(5, 3) = 2, cd(3, 6) = cd(6, 3) = 4,

cd(4, 5) = cd(5, 4) = 5, cd(4, 6) = cd(6, 4) = 7, cd(5, 6) = cd(6, 5) = 2
ecd(1) = 9,ecd(2) = 7, ecd(3) = 5, ecd(4) = 7, ecd(5) = 7, ecd(6) = 9, rcd(G) = 5,

Bcd(1, rcd(G)) = {1, 2}, Bcd(2, rcd(G)) = {1, 2, 3, 4},

Bcd(3, rcd(G)) = {2, 3, 4, 5, 6}, Bcd(4, rcd(G)) = {2, 3, 4},

Bcd(5, rcd(G)) = {3, 5, 6}, Bcd(6, rcd(G)) = {3, 5, 6}.
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Figure 3 illustrates the subbasis for τcd in which the vertices joined under differ-
ently colored lines form the elements of the subbasis for τcd.

1 2 3

4 5 6

Figure 3

Subbasis for τcd = {{1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {3, 5, 6}, {3, 5, 6}}.
Basis for τcd = {∅, {1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {3, 5, 6}, {2}, {3}},
τcd = {∅, {1, 2}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {3, 5, 6}, {2}, {3}, {2, 3}, {1, 2, 3,
4, 5, 6}, {2, 3, 5, 6}},

cdD(1, 2) = cdD(2, 1) = 10, cdD(1, 3) = cdD(3, 1) = 21,

cdD(1, 4) = cdD(4, 1) = 20, cdD(1, 5) = cdD(5, 1) = 27,

cdD(1, 6) = cdD(6, 1) = 31, cdD(2, 3) = cdD(3, 2) = 17,

cdD(2, 4) = cdD(4, 2) = 16, cdD(2, 5) = cdD(5, 2) = 23,

cdD(2, 6) = cdD(6, 2) = 27, cdD(3, 4) = cdD(4, 3) = 16,

cdD(3, 5) = cdD(5, 3) = 12, cdD(3, 6) = cdD(6, 3) = 16,

cdD(4, 5) = cdD(5, 4) = 22, cdD(4, 6) = cdD(6, 4) = 26,

cdD(5, 6) = cdD(6, 5) = 8,

eD
cd(1) = 31, eD

cd(2) = 27, eD
cd(3) = 21, eD

cd(4) = 26,

eD
cd(5) = 27, eD

cd(6) = 31, rD
cd(G) = 21,

BD
cd(1, rD

cd(G)) = {1, 2, 4}, BD
cd(2, rD

cd(G)) = {1, 2, 3, 4},

BD
cd(3, rD

cd(G)) = {2, 3, 4, 5, 6}, BD
cd(4, rD

cd(G)) = {1, 2, 3, 4},

BD
cd(5, rD

cd(G)) = {3, 6, 5}, BD
cd(6, rD

cd(G)) = {3, 6, 5}.

Figure 4 illustrates the subbasis for τD
cd in which the vertices joined under dif-

ferently colored lines form the elements of the subbasis for τD
cd.
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1 2 3

4 5 6

Figure 4

Subbasis for τD
cd = {{1, 2, 4}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {1, 2, 3, 4}, {3, 6, 5}, {3, 6, 5}}.

Basis for τD
cd = {∅, {1, 2, 4}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {3, 6, 5}, {2, 4}, {2, 3, 4}, {3}},

τD
cd = {∅, {1, 2, 4}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {3, 6, 5}, {2, 4}, {2, 3, 4}, {3}, {1, 2, 3, 4,

5, 6}}.

Theorem 3.3. For any graph G, BD(x, rD(G)) = Bcd(x, rcd(G)).

Proof. In any graph G, cd(u, v) = d(u, v) + D(u, v) for all u, v ∈ V (G) and
rcd(G) = rd(G) + rD(G). Now, y ∈ BD(x, rD(G)) ⇒ D(x, y) < rD(G) < rD(G) +
rd(G) = rcd(G). Also d(x, y) < D(x, y). Hence, d(x, y) + D(x, y) < rcd(G) and so
cd(x, y) < rcd(G). Thus, y ∈ Bcd(x, rcd(G)).

Now, y ∈ Bcd(x, rcd(G)) ⇒ cd(x, y) < rcd(G) ⇒ d(x, y) + D(x, y) < rd(G) +
rD(G) ⇒ d(x, y) < rd(G) and D(x, y) < rD(G). Hence, y ∈ BD(x, rD(G)). Thus,
for any graph G, BD(x, rD(G)) = Bcd(x, rcd(G)). □

Next, the structures of balls that are described by different graph metrics on
vertex set of some standard graphs are dealt.

Theorem 3.4. For a cycle graph Cn with n ≥ 4, the following holds:
(i) Bd(v, rd(Cn)) ∪ BD(v, rD(Cn)) = V (Cn) for all v ∈ V (Cn),
(ii) Bcd(v, rcd(Cn)) = {v} for all v ∈ V (Cn),
(iii) BD

cd(v, rD
d (Cn)) = {v} for all v ∈ V (Cn).

Proof. (i) For any two vertices in Cn, there are exactly two paths connecting
them, one of which is a geodesic path P1 and the other is a detour path P2.

Note that the length of P1 + the length of P2 = n.
Also, ed(v) = [ n

2 ] and eD(v) = n − 1 for all v ∈ V (Cn). So, rd(Cn) = [ n
2 ]

and rD(Cn) = n − 1. Clearly, v ∈ Bd(v, rd(Cn)) and v ∈ BD(v, rD(Cn)) for all
v ∈ V (Cn). Let w ∈ V (Cn) be arbitrary. If d(v, w) < [ n

2 ], then w ∈ Bd(v, rd(Cn));
otherwise D(v, w) = n − [ n

2 ] < n − 1, so that w ∈ BD(v, rD(Cn)). Hence,
Bd(v, rd(Cn)) ∪ BD(v, rD(Cn)) = V (Cn) for all v ∈ V (Cn).

(ii) Let v ∈ V (Cn) be arbitrary. Since there are exactly two paths between any
two vertices in Cn, cd(v, u) = n for all u ∈ V (Cn) − {v}. Hence, ecd(v) = n for all
v ∈ V (Cn) and rcd(Cn) = n. So, Bcd(v, rcd(Cn)) = {v}.



80 K. LALITHAMBIGAI, P. GNANACHANDRA and S. JAFARI

(iii) Let v ∈ V (Cn) be arbitrary. Since there are exactly two paths between any
two vertices in Cn and the degree of every vertex in Cn is 2, the cdD(v, u) values
are equal for each u ∈ V (Cn) − {v}. Let cdD(v, u) = b for every u ∈ V (Cn) − {v}.

Hence, eD
cd(v) = b for all v ∈ V (Cn) and rD

cd(Cn) = b. So, BD
cd(v, rD

cd(Cn)) =
{v}. □

Theorem 3.5. For a path graph Pn with n ≥ 2,
Bd(v, rd(Pn)) = BD(v, rD(Pn)) = Bcd(v, rcd(Pn)) = BD

cd(v, rD
cd(Pn))

for all v ∈ V (Pn).

Proof. In a path graph Pn, there exists exactly one path between any two
vertices. Hence, for any v ∈ V (Pn), d(v, u) = D(v, u) for all u ∈ V (Pn). So,
rd(Pn) = rD(Pn), which implies Bd(v, rd(Pn)) = BD(v, rD(Pn)) for all v ∈ V (Pn).
Also, for any two vertices u, v ∈ V (Pn), cd(v, u) = 2d(v, u) and cdD(v, u) =
2{d(v, u) + deg(v) + deg(u) +

∑
x deg(x), where the summation is taken over all

the internal vertices x of the path connecting v and u}. Hence, rcd(Pn) = 2rd(Pn)
and rD

cd(Pn) = 2{rd(Pn) deg(v) + deg(u) +
∑

x deg(x), where the summation is
taken over all the internal vertices x of the path connecting v and u}. Now, u ∈
Bcd(v, rcd(Pn)) ⇔ cd(v, u) < rcd(Pn) ⇔ 2d(u, v) < 2rd(Pn) ⇔ d(u, v) < rd(Pn)
⇔ u ∈ Bd(v, rd(Pn)). Hence, Bcd(v, rcd(Pn)) = Bd(v, rd(Pn)).

Similarly, BD(v, rD(Pn)) = BD
cd(v, rD

cd(Pn)) = Bd(v, rd(Pn)). □

Theorem 3.6. For a wheel graph Wn with n ≥ 4,
Bd(v, rd(Wn)) = BD(v, rD(Wn)) = Bcd(v, rcd(Wn)) = {v}

for all v ∈ V (Wn).

Proof. For any two vertices u ̸= v in Wn, d(u, v) = 1 or 2, D(u, v) = n − 1,
cd(u, v) = n or n+1. In particular, if w is the centre vertex of Wn, then d(w, x) = 1
and cd(w, x) = n for all x ∈ V (Wn) − {w}. Hence, ed(w) = 1 and ecd(w) = n.
So, rd(Wn) = 1, rD(Wn) = n − 1 and rcd(Wn) = n. Thus, Bd(v, rd(Wn)) =
BD(v, rD(Wn)) = Bcd(v, rcd(Wn)) = {v} for all v ∈ V (Wn). □

Theorem 3.7. For a star graph St1,n with n ≥ 3, Bd(v, rd(St1,n)) =
BD(v, rD(St1,n)) = Bcd(v, rcd(St1,n)) = BD

cd(v, rD
cd(St1,n)) = {v} for all v ∈

V (St1,n).

Proof. In a star graph, there is exactly one path between any two vertices and
so d(u, v) = D(u, v) for all u, v ∈ V (St1,n). If w is a central vertex of St1,n,
then d(w, v) = 1 for all v ∈ V (St1,n) and for all u ∈ V (St1,n), d(u, v) = 2, where
v ̸= w. Hence, ed(v) = 2 for all v ̸= w and ed(w) = 1. So, rd(St1,n) = 1 and
Bd(v, rd(St1,n)) = {v}. Consequently, BD(v, rD(St1,n)) = {v}. Also, cd(w, v) = 2
for all v ∈ V (St1,n) and for all u ∈ V (St1,n), cd(u, v) = 4, where v ̸= w.
Hence, ecd(v) = 4 for all v ̸= w and ecd(w) = 2. So, rcd(St1,n) = 2 and
Bcd(v, rcd(St1,n)) = {v}. Since there exists exactly one path between any two
vertices in St1,n and the degree of every vertex other than w in St1,n is 1, for
each u ∈ V (St1,n), the cdD(v, u) values are equal for every v ∈ V (St1,n) − {w}.
Let cdD(v, u) = b for every v ∈ V (St1,n) − {w} and cdD(w, u) < b for all
u ∈ V (St1,n). Let cdD(w, u) = a for all u ∈ V (St1,n), where a < b. Hence,
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eD
cd(v) = b for all v ̸= w ∈ V (St1,n) and eD

cd(w) = a. So rD
cd(St1,n) = a. So,

BD
cd(v, rD

cd(St1,n)) = {v}. □

Theorem 3.8. For a complete graph Kn with n ≥ 4,

Bd(v, rd(Kn)) = BD(v, rD(Kn)) = Bcd(v, rcd(Kn)) = BD
cd(v, rD

cd(Kn)) = {v}

for all v ∈ V (Kn).

Proof. In a complete graph Kn, for any two vertices u ̸= v, d(u, v) = 1, D(u, v) =
n − 1, cd(u, v) = n. Hence, rd(Kn) = 1, rD(Kn) = n − 1, rcd(Kn) = n. Conse-
quently, Bd(v, rd(Kn)) = BD(v, rD(Kn)) = Bcd(v, rcd(Kn)) = {v} for all v ∈
V (Kn). Since every two vertices in Kn are adjacent and the degree of every vertex
is n − 1, the cdD(u, v) values are equal for each u ∈ V (Kn). Let cdD(u, v) = b
for all u ∈ V (Kn). So, eD

cd(v) = b for all v ∈ V (Kn). Hence, rD
cd(Kn) = b and

BD
cd(v, rD

cd(Kn)) = {v} for all v ∈ V (Kn). □

From the above theorems, we can infer:
(i) For any graph G, τD = τcd;
(ii) τcd and τD

cd on the vertex set of cycle graphs are discrete topologies;
(iii) τd, τD, τcd and τD

cd on the vertex set of path graphs are the same;
(iv) τd, τD and τcd on the vertex set of wheel graphs are discrete topologies;
(v) τd, τD, τcd and τD

cd on the vertex set of star graphs and complete graphs
are discrete topologies.

4. Topologies induced by eccentric neighbourhoods

This section presents the method of generating topologies induced by eccentric
neighbourhoods of vertices viz. geodesic eccentric neighbourhoods, detour eccen-
tric neighbourhoods, circular eccentric neighbourhoods and circular D-eccentric
neighbourhoods.

Definition 4.1. In a graph G, the eccentric neighbourhoods with respect to
metrics geodesic distance d(x, y), detour distance D(x, y), circular distance cd(x, y)
and circular D-distance cdD(x, y) are defined as follows:

Nd(v) = {u ∈ V (G) : d(u, v) = ed(v)};
ND(v) = {u ∈ V (G) : D(u, v) = eD(v)};
Ncd(v) = {u ∈ V (G) : cd(u, v) = ec(v)};
ND

cd(v) = {u ∈ V (G) : cdD(u, v) = eD
c (v)}.

Let Md(v), MD(v), Mcd(v) and MD
cd(v) be the complement of Nd(v), ND(v), Ncd(v)

and ND
cd(v), respectively. By definition of d(x, y), D(x, y), cd(x, y), cdD(x, y), for

any v ∈ V (G), v /∈ any of Nd(v), ND(v), Ncd(v) and ND
cd(v). So, v ∈ Md(v),

MD(v), Mcd(v) and MD
cd(v) for every v ∈ V (G). Hence, the family of Md(v) forms

a subbasis for the topology τM−d; the family of MD(v) forms a subbasis for the
topology τM−D; the family of Mcd(v) forms a subbasis for the topology τM−cd;
the family of MD

cd(v) forms a subbasis for the topology τD
M−cd on a vertex set of G.

Example 4.2. Consider the following graph.
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1

2

3

4

5

6

d(1, 2) = d(2, 1) = 1, d(1, 3) = d(3, 1) = 2, d(1, 4) = d(4, 1) = 3,

d(1, 5) = d(5, 1) = 3, d(1, 6) = d(6, 1) = 3, d(2, 3) = d(3, 2) = 1,

d(2, 4) = d(4, 2) = 2, d(2, 5) = d(5, 2) = 2, d(2, 6) = d(6, 2) = 2,

d(3, 4) = d(4, 3) = 1, d(3, 5) = d(5, 3) = 1, d(3, 6) = d(6, 3) = 1,

d(4, 5) = d(5, 4) = 2, d(4, 6) = d(6, 4) = 2, d(5, 6) = d(6, 5) = 1,

ed(1) = 3, ed(2) = 2, ed(3) = 2, ed(4) = 3, ed(5) = 3, ed(6) = 3,

Nd(1) = {4, 5, 6}, Nd(2) = {4, 5, 6}, Nd(3) = {1},

Nd(4) = {1}, Nd(5) = {1}, Nd(6) = {1},

Md(1) = {1, 2, 3}, Md(2) = {1, 2, 3}, Md(3) = {2, 3, 4, 5, 6},

Md(4) = {2, 3, 4, 5, 6}, Md(5) = {2, 3, 4, 5, 6}, Md(6) = {2, 3, 4, 5, 6}.

Figure 5 illustrates the subbasis for τM−d in which the vertices joined under dif-
ferently colored lines form the elements of the subbasis for τM−d.

1 2 3

4 5 6

Figure 5

Subbasis for τM−d = {{1, 2, 3}, {1, 2, 3}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6},
{2, 3, 4, 5, 6}}. Basis for τM−d = {∅, {1, 2, 3}, {2, 3, 4, 5, 6}, {2, 3}}, τM−d = {∅,
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{1, 2, 3}, {2, 3, 4, 5, 6}, {2, 3}, {1, 2, 3, 4, 5, 6}},
D(1, 2) = D(2, 1) = 1, D(1, 3) = D(3, 1) = 2, D(1, 4) = D(4, 1) = 3,

D(1, 5) = D(5, 1) = 4, D(1, 6) = D(6, 1) = 4, D(2, 3) = D(3, 2) = 1,

D(2, 4) = D(4, 2) = 2, D(2, 5) = D(5, 2) = 3, D(2, 6) = D(6, 2) = 3,

D(3, 4) = D(4, 3) = 1, D(3, 5) = D(5, 3) = 2, D(3, 6) = D(6, 3) = 2,

D(4, 5) = D(5, 4) = 3, D(4, 6) = D(6, 4) = 3, D(5, 6) = D(6, 5) = 2,

eD(1) = 4, eD(2) = 3, eD(3) = 2, eD(4) = 3, eD(5) = 4, eD(6) = 4,

ND(1) = {5, 6}, ND(2) = {5, 6}, ND(3) = {1, 5, 6},

ND(4) = {1, 5, 6}, ND(5) = {1}, ND(6) = {1},

MD(1) = {1, 2, 3, 4}, MD(2) = {1, 2, 3, 4}, MD(3) = {2, 3, 4},

MD(4) = {2, 3, 4}, MD(5) = {2, 3, 4, 5, 6}, MD(6) = {2, 3, 4, 5, 6}.

Figure 6 illustrates the subbasis for τM−D in which the vertices joined under
differently colored lines form the elements of the subbasis for τM−D.

1 2 3

4 5 6

Figure 6

Subbasis for τM−D = {{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}, {2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3,
4, 5, 6}}. Basis for τM−D = {∅, {1, 2, 3, 4}, {2, 3, 4}, {2, 3, 4, 5, 6}}, τM−D = {∅, {1,
2, 3, 4}, {2, 3, 4}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}},

cd(1, 2) = cd(2, 1) = 2, cd(1, 3) = cd(3, 1) = 4, cd(1, 4) = cd(4, 1) = 6,

cd(1, 5) = cd(5, 1) = 7, cd(1, 6) = cd(6, 1) = 7, cd(2, 3) = cd(3, 2) = 2,

cd(2, 4) = cd(4, 2) = 4, cd(2, 5) = cd(5, 2) = 5, cd(2, 6) = cd(6, 2) = 5,

cd(3, 4) = cd(4, 3) = 2, cd(3, 5) = cd(5, 3) = 3, cd(3, 6) = cd(6, 3) = 3,

cd(4, 5) = cd(5, 4) = 5, cd(4, 6) = cd(6, 4) = 5, cd(5, 6) = cd(6, 5) = 3,

ecd(1) = 7, ecd(2) = 5, ecd(3) = 4, ecd(4) = 6, ecd(5) = 7, ecd(6) = 7,

Ncd(1) = {5, 6}, Ncd(2) = {5, 6}, Ncd(3) = {1}, Ncd(4) = {1},

Ncd(5) = {1}, Ncd(6) = {1},

Mcd(1) = {1, 2, 3, 4}, Mcd(2) = {1, 2, 3, 4},

Mcd(3) = {2, 3, 4, 5, 6}, Mcd(4) = {2, 3, 4, 5, 6},
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Mcd(5) = {2, 3, 4, 5, 6}, Mcd(6) = {2, 3, 4, 5, 6}.

Figure 7 illustrates the subbasis for τM−cd in which the vertices joined under
differently colored lines form the elements of the subbasis for τM−cd.

1 2 3

4 5 6

Figure 7

Subbasis for τM−cd = {{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 5,
6}, {2, 3, 4, 5, 6}}. Basis for τM−cd = {∅, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}}, τM−cd

= {∅, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {1, 2, 3, 4, 5, 6}},

cdD(1, 2) = cdD(2, 1) = 8, cdD(1, 3) = cdD(3, 1) = 18,

cdD(1, 4) = cdD(4, 1) = 22, cdD(1, 5) = cdD(5, 1) = 27,

cdD(1, 6) = cdD(6, 1) = 27, cdD(2, 3) = cdD(3, 2) = 14,

cdD(2, 4) = cdD(4, 2) = 18, cdD(2, 5) = cdD(5, 2) = 23,

cdD(2, 6) = cdD(6, 2) = 23, cdD(3, 4) = cdD(4, 3) = 12,

cdD(3, 5) = cdD(5, 3) = 17, cdD(3, 6) = cdD(6, 3) = 17,

cdD(4, 5) = cdD(5, 4) = 21, cdD(4, 6) = cdD(6, 4) = 21,

cdD(5, 6) = cdD(6, 5) = 15,

eD
cd(1) = 27, eD

cd(2) = 23, eD
cd(3) = 18, eD

cd(4) = 22, eD
cd(5) = 27, eD

cd(6) = 27,

ND
cd(1) = {6, 5}, ND

cd(2) = {5, 6}, ND
cd(3) = {1},

ND
cd(4) = {1}, ND

cd(5) = {1}, ND
cd(6) = {1}

MD
cd(1) = {1, 2, 3, 4}, MD

cd(2) = {1, 2, 3, 4}, MD
cd(3) = {2, 3, 4, 5, 6},

MD
cd(4) = {2, 3, 4, 5, 6}, MD

cd(5) = {2, 3, 4, 5, 6}, MD
cd(6) = {2, 3, 4, 5, 6}.

Figure 8 illustrates the subbasis for τD
M−cd in which the vertices joined under

differently colored lines form the elements of the Subbasis for τD
M−cd.
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1 2 3

4 5 6

Figure 8

Subbasis for τD
M−cd = {{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 6,

5}, {2, 3, 4, 6, 5}}. Basis for τD
M−cd = {∅, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}}, τD

M−cd

= {∅, {1, 2, 3, 4}, {2, 3, 4, 5, 6}, {2, 3, 4}, {1, 2, 3, 4, 5, 6}}.

Theorem 4.3. In any graph G, Mcd(v) = Md(v) ∪ MD(v) for all v ∈ V (G).

Proof. In any graph G, cd(u, v) = d(u, v) + D(u, v) for all u, v ∈ V (G) and
ecd(v) = ed(v) + eD(v) for all v ∈ V (G). Now, u ∈ Ncd(v) ⇔ cd(u, v) = ecd(v) ⇔
d(u, v) + D(u, v) = ed(v) + eD(v) ⇔ d(u, v) = ed(v) and D(u, v) = eD(v) ⇔ u ∈
Nd(v) and u ∈ ND(v) ⇔ u ∈ Nd(v) ∩ ND(v). Hence, Ncd(v) = Nd(v) ∩ ND(v) for
all v ∈ V (G) and Mcd(v) = Md(v) ∪ MD(v) for all v ∈ V (G). □

Theorem 4.4. In a cycle graph Cn with n ≥ 4, Md(v) = Bd(v, rd(Cn)) for all
v ∈ V (Cn).

Proof. In Cn, ed(v) = [ n
2 ] for all v ∈ V (Cn) and rd(Cn) = [ n

2 ].
Now, u ∈ Bd(v, rd(Cn)) ⇒ d(u, v) < rd(Cn) = [ n

2 ] = ed(v) ⇒ u /∈ Nd(v) ⇒
u ∈ Md(v). Now, u ∈ Md(v) ⇒ d(u, v) < ed(v) ⇒ d(u, v) < rd(Cn) ⇒ u ∈
Bd(v, rd(Cn)). So, Md(v) = Bd(v, rd(Cn)) for all v ∈ V (Cn). □

The structure of the standard graphs viz. path graph, cycle graph, complete
graph, wheel graph and star graph and the definition of eccentric neighbourhoods,
infer the following observations.

Observation 4.5. 1. In a path graph Pn with n ≥ 3, since there exists
a unique path between any two vertices, we have Md(v) = MD(v) = Mcd(v)
for all v ∈ V (Pn) and so τM−d = τM−D = τM−cd. Also, if v1, v2, . . . , vn are the
vertices of Pn, when n is odd, we can see

ND
cd(v1) = ND

cd(v2) = · · · = ND
cd(v[ n

2 ]) = {vn}, ND
cd(v[ n

2 ]+1) = {v1, vn},

ND
cd(v[ n

2 ]+2) = ND
cd(v[ n

2 ]+3) = · · · = ND
cd(vn) = {v1}

so that
τD

M−cd = {∅, {v1, v2, . . . , vn−1}, {v2, . . . , vn}, {v2, . . . , vn−1}, {v1, v2, . . . , vn}}
and when n is even, we can see
ND

cd(v1) = ND
cd(v2) = · · · = ND

cd(v n
2

) = {vn}, ND
cd(v n

2 +1) = · · · = ND
cd(vn) = {v1}
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so that
τD

M−cd = {∅, {v1, v2, . . . , vn−1}, {v2, . . . vn}, {v2, . . . , vn−1}, {v1, v2, . . . vn}}.

2. In a complete graph Kn with n ≥ 4, we see that
Nd(v) = ND(v) = Ncd(v) = ND

cd(v) = V (Kn) − {v}
for every v ∈ V (Kn) and so τM−d, τM−D, τM−cd and τD

M−cd are all discrete topolo-
gies on a vertex set of Kn.

3. If v1, v2, . . . , vn−1 are the vertices of the cycle of a wheel graph Wn with
n ≥ 3 and vn is the centre vertex of Wn, then for i = 1, 2, . . . , n − 1,

Nd(vi) = Ncd(vi) = {v1, v2, . . . , vi−2, vi+2, . . . , vn−1}
and

Nd(vn) = Ncd(vn) = {v1, v2, . . . , vn−1}; ND(v) = V (Wn) − {v}
for all v ∈ V (Wn).

4. If v1, v2, . . . , vn are the leaves of a star graph St1,n with n ≥ 3, and w is the
central vertex of St1,n, then for i = 1, 2, . . . , n,

Nd(vi) = ND(vi) = Ncd(vi) = ND
cd(vi) = {v1, v2, . . . , vi−1, vi+1, . . . , vn}

and
Nd(w) = ND(w) = Ncd(w) = ND

cd(w) = {v1, v2, . . . , vn}.

5. Conclusion

Based on different distances in graphs, the methods of generating topologies by
different graph metrics viz. open balls and eccentric neighbourhoods of vertices
are presented. The nature of topologies generated by graph metrics on the ver-
tex set of some standard graphs is studied. It is proved that for any graph
G, BD(x, rD(G)) = Bcd(x, rcd(G)). It is observed that the open balls obtained
through other distances are independent of each other. Also, the relations between
the topologies generated by different graph metrics on the vertex set of complete
graph, path graph, cycle graph, wheel graph and star graph are explored. For
a cycle graph Cn, n ≥ 4, the relationships between the topologies generated in
sections 2 and 3 are studied and it is proved that Md(v) = Bd(v, rd(Cn)) for all
v ∈ V (Cn). It is observed that, in general, the topologies generated in sections
2 and 3 are independent. Also, the results in this paper can be studied further
using the graph metrics viz. closed balls, closed eccentric neighbourhoods, etc. In
a further study, one can explore the relationship between the topologies generated
by different graph metrics. The topologies generated using the graph metric can
be used to solve network problems which focus on distances in graphs. This paper
can be regarded as the initial stage of studying a topological structure on a vertex
set of graphs using graph metrics, which could lead to significant applications in
real life.
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