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BAYESIAN VARIABLE SELECTION FOR LINEAR
REGRESSION WITH THE κ-G PRIORS

ZICHEN MA and ERNEST P. FOKOUÉ

Abstract. In this paper, we propose a method that balances between variable se-
lection and variable shrinkage in linear regression. A diagonal matrix G is injected
to the covariance matrix of prior distribution of the coefficient vector β, with each
gj , bounded between 0 and 1, on the diagonal serving as a stabilizer of the corre-
sponding βj . Mathematically, a gj value close to 0 indicates that the βj is nonzero,
and hence the corresponding variable should be selected, whereas the value of gj

close to 1 indicates otherwise. We prove this property under orthogonality. Com-
putationally, the proposed method is easy to fit using automated programs such as
JAGS. We provide three examples to verify the capability of this methodology in
variable selection and shrinkage.

1. Introduction

Consider the Linear model given by

y = Xβ + ϵ, ϵ ∼ N
(
0, σ2I

)
, (1.1)

where y is an n × 1 response vector, X = [x1, x2, . . . , xp] an n × p design matrix,
β = (β1, β2, . . . , βp) a p × 1 regression coefficient vector, and ϵ the random error.
Let X be the collection of all covariates in (1.1). In many applications where the
size of X is large, only a small portion of covariates affect the response whereas
the others are irrelevant [16]. This leads to the key question of identifying those
“important” covariates. Approaches to answering this question can be loosely
dichotomized into two general strategies, variable selection or variable shrinkage.
In general, both seek the best fit that balances between maximizing the given
data likelihood and minimizing the complexity of the model. The difference lies in
how to achieve this goal. Variable selection concerns finding a subset of X which
produces the best fit based on some criterion. An unselected covariate xj has
estimated coefficient β̂j in the final model. On the other hand, variable shrinkage,
or regularization, techniques minimize the residual sum of squares associated with
(1.1), subject to some constraints that penalize the complexity of the model. This
leads to shrinking some estimated coefficients β̂j toward 0, but may not be exactly
0, faster than others.

Under the frequentist framework, stepwise regression has been widely used as
a technique in variable selection [13]. There are several different ways to implement
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stepwise regression. For instance, in the procedure of forward selection, starting
from the null model y = µ+ϵ, where µ is independent of X, variables are added to
the null model one at a time until a certain stopping rule is met. The stopping rule
often utilizes an information criterion, such as AIC or BIC. The selected covariates
in the final model are considered “important”. [15] proposed a stepwise regression
method that is suitable for high-dimensional sparse linear regression with p ≫ n.
An alternative to stepwise regression is the best subsets regression, which ranks
linear models for all possible subsets of X according to a certain criterion, often
the Mallows’ Cp-statistic [19]. Models with values of Cp close to p are usually
considered the best [11].

Ridge regression, due to [14], is one of the earliest practices of frequentist vari-
able shrinkage in a linear model. The original idea is to boost the diagonal in the
ill-posed matrix X ′X by adding a positive quantity λ so that the inversion is feasi-
ble. From the regularization point of view, ridge regression minimizes the residual
sum of squares subject to the condition ||β||22 =

∑
β2

j less than some constant.
The shrinkage parameter λ is simply the Lagrange multiplier in the constraint
optimization. Increasing the value of λ results in the βj ’s shrinking toward 0.
However, ridge regression is not sparse as a result of the squared penalty. This
problem is remedied in lasso [22], which alters the constraint to ||β||1 =

∑
|βj | less

than some constant. Due to the L1 penalty, the lasso solution produces β̂j = 0 for
some j, indicating explicitly that the corresponding covariate is irrelevant. Work
along this line includes [23], [7], and [27].

Under the Bayesian framework, a widely used strategy in variable selection is
as the following. Each covariate xj ∈ X is coupled with an indicator γj , which is
equal to 1 if xj is included in the model and 0 otherwise. Using this notation, every
subset in X can be associated with an indicator vector γ = (γ1, . . . , γp)′. Then,
with certain priors on β and σ2, the marginal distribution p(y|γ) under model γ
can be computed by integrating out β. Then, different models γ1 and γ2 can be
compared using Bayes factor, given by BF12 = [p(y|γ1)/p(y|γ2)]. If model γ1 is
better, the resulting Bayes factor is large. A thorough discussion on Bayes factor is
given in [17]. An issue with this strategy is that the integration is often infeasible,
leading to an intractable Bayes factor. [26] proposed an informative prior on β
of the form β|σ2 ∼ Np(0, gσ2(X ′X)−1) and an improper prior on σ2 of the form
p(σ2) ∝ σ−2. This choice of prior distributions on β and σ2 leads to a tractable
Bayes factor, which makes it attractive in the variable selection. In practice,
a reference model is usually chosen to be the full model γ = 1 = (1, . . . , 1)′ or the
null model γ = 0 = (0, . . . , 0)′. Suppose the reference model is chosen to be the
null model. For all other models, an associated Bayes factor can be computed by
BF = [p(y|γ)/p(y|0)]. The best model has the largest Bayes factor.

Theoretically the method described above should exhaust all 2p possible subsets
of X , including the null model and the full model. Difficulty quickly arises when
the dimensionality increases, due to the fact that this method searches through the
model space of size 2p. Certain works have been done to resolve this issue. Most
notably, [9] proposed an empirical method of stochastic search variable selection
(SSVS). Each βj is selected or rejected based on a Monte Carlo average of γj from
a Gibbs sampler. The Monte Carlo average of γj is called the posterior inclusion
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probability (PIP) of βj . A large value in PIPj implies that the corresponding
estimated γj equals 1, βj nonzero, and hence the variable is likely to be in the true
model, which the authors named as “promising variable”.

Similar work can be seen in [2], in which the authors proposed a median proba-
bility model rather than a highest probability model, and the variables are selected
based on a criterion of PIPj > 0.5. Further, [8] modified the method in [2] to
a prevalence model, which solved the problem that such median probability model
may not exist. Certain works have been done to summarize the Bayesian variable
selection with the indicator method. [21] provides a thorough review of different
methods in Bayesian variable selection. [12] gives a detailed comparison of differ-
ent empirical Bayes methods, especially the Markov Chain Monte Carlo (MCMC)
methods, regarding the Bayes factor.

We denote by βγ the regression coefficient vector according to model γ. Certain
thoughts have been given to the prior of β and βγ instead of the traditional g-
prior. [10] provided a prior of βγ of the form βγ ∼ N(0, DγRγDγ), where Dγ is
a diagonal matrix and Rγ is symmetric. Such a prior gives a good generalization of
g-prior. [1] gave an alternative that follows βγ ∼ N(0, gσ2(X ′

γAγXγ)−1), where
Aγ is symmetric and weighs different observations, but not the covariates, and
Xγ is the design matrix according to model γ. Moreover, multiple works have
been done to extend the original Zellner’s g-prior. Notably, [18] proposed a study
on mixtures of g-priors which provides a family of hyperpriors on g while still
preserving the tractability on the marginal likelihood. [4] developed an extension
of Zellner’s g-prior to generalized linear models, given a large family of hyperpriors
on g. [20] introduced a fully Bayes formulation with an orthogonal decomposition
on the matrix X ′

γXγ , which resolves the issue of p ≫ n. All the works mentioned
above rely on the indicator method, which is classic but somewhat redundant. At
the worst, the methods still have to face the model space of size 2p.

An alternative to the indicator method is through variable shrinkage. [24] in-
troduced a method called the relevance vector machine (RVM). The prior on β is
given by βj

ind∼ N(0, α−1
j ) for j = 1, . . . , p. The parameter αj serves as a stabi-

lizer. That is, since the coefficient βj is a priori centered at 0, the prior variance
approaches 0 as αj → ∞. On the other hand, the prior becomes flat as αj → 0.
Interestingly, as stated in [25], combining the non-sparse normal prior on β with
a gamma hyperprior on each of the αj ’s, the marginal of β becomes a multivari-
ate t-distribution after integrating out the αj ’s, which leads the RVM to a sparse
selection machine. As a side note, this property of sparsity is even more elegant
when the input in the linear model is raised from feature space to kernel space,
which is the main focus in [24,25], but not in our work.

Further, a global-local shrinkage technique that has gained much attention in
recent years is the horseshoe priors, due to [6]. Comparing to RVM, in addition
to assigning each βj its own prior variance, it formulates the prior of βj as βj ∼
N(0, λ2

jτ2) with λj ∼ C+(0, 1), a standard half Cauchy distribution. The global
parameter τ shrinks all βj ’s to 0, while the local parameter λj allows the specific
βj to escape from the shrinkage. For a detailed exposition on the horseshoe priors,
its relation to lasso, and numerical examples, see [3].
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Standard variable selection techniques usually have hard thresholds, meaning
that a covariate is either included or excluded from the model, whereas standard
variable shrinkage methods at times do not provide explicit information about
whether a variable is irrelevant. In this article, we propose a method from the
Bayesian perspective that, on the one hand, provides a soft threshold for variable
selection, while, on the other hand, shrinks the irrelevant coefficients to a certain
degree. Section 2 provides a thorough discussion on the formulation of the pro-
posed method. Section 3 provides three examples that demonstrate the capability
of the proposed methodology in variable selection. Of the three examples, the first
two are simulated examples taken from [9], while the third one is an application
on a real data set. And finally, we provide a conclusion in Section 4.

2. Method

Section 2.1 details the proposed hierarchical model and derives the posterior dis-
tributions of the regression coefficients. Section 2.2 discusses the posterior distri-
bution of the shrinkage parameter and its usage in variable shrinkage. Specifically,
an important result is given, which links the behavior of the shrinkage parameters
and the “significance” of corresponding covariates under orthogonal design matrix.
Section 2.3 provides the posterior distribution of the scale parameters. To avoid
confusion, we adopt the phrase promising variable from [9].

2.1. Formulation of the κ-G model

Consider the linear model in (1.1). The idea of the proposed method is to construct
an informative prior on β, in which, for j = 1, . . . , p, the covariance term couples
each covariate xj with a hyperparameter gj with continuous support over (0, 1).
Given hyperpriors on each gj , the relationship between the covaraite xj and the re-
sponse y is reflected through the posterior of gj . Formally, let G = diag(g1, . . . , gp)
be a p-dimensional diagonal matrix. The proposed hierarchical model is given by

y|β, σ2 ∼ Nn

(
Xβ, σ2I

)
β|κ, σ2 ∼ Np

(
0, κσ2 [GX ′XG]−1

)
g1, g2, . . . , gp

iid∼ Beta(a, a)
κ−1 ∼ Gamma(α, θ)

p(σ2) ∝ σ−2.

(2.1)

Consider the intuition of this model when the design matrix is orthogonal; i.e.
x′

j1
xj2 = 0 for all j1 ̸= j2. Provided κ and σ2 are non-zero, the prior on βj has

infinite variance if gj is strictly 0. On the other hand, the prior variance of βj is
the same as that under Zellner’s g-prior, which is the inverse Fisher information
scaled by κ, when gj is strictly 1. We let gj vary between 0 and 1 with a beta prior
distribution symmetric about 1

2 . The parameter κ has the same practical meaning
as the parameter g in Zellner’s g-prior, serving as a global shrinkage parameter.
A larger value of κ corresponds to more prior variability on β. The gamma prior
distribution on κ−1 is out of consideration for conjugacy. The use of Jeffrey’s prior
on σ2 follows from [26].
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Following the formulation in (2.1), the posterior of β is given by

β|G, y, κ, σ2 ∼ N (µβ, Σβ) , (2.2)

where the posterior mean and variance are given by

µβ =
(
X ′X + κ−1GX ′XG

)−1
X ′y,

Σβ = σ2 (X ′X + κ−1GX ′XG
)−1

.
(2.3)

Denote by β̂(OLS) = (X ′X)−1
X ′y the ordinary least squares (OLS) estimator of

β. The proposition below follows from (2.2) and (2.3).

Theorem 2.1. Let κ > 0. We have
(i) The posterior of β approaches the OLS estimator as gj → 0 for all j = 1, . . . , p

with µβ = β̂(OLS) and Σβ = V ar(β̂(OLS)).
(ii) The posterior of β approaches the posterior using Zellner’s g-prior as gj → 1

for all j = 1, . . . , p, with µβ = κ
κ+1 · β̂(OLS) and Σβ = κ

κ+1 · V ar(β̂(OLS)).

The results above are immediate by setting G to be the zero matrix 0p×p in (i)
and the identity matrix Ip×p in (ii), respectively.

In the first part of Proposition 2.1, observe that gj → 0 for all j = 1, . . . , p
is equivalent to assigning a flat prior on all βj ’s, which provides mininal amount
of a priori information on β. As a result, the posterior mean coincides with
the OLS estimator, which is also the frequentist estimator of β under maximum
likelihood. On the other hand, in the second part of the proposition, if gj → 1
for all j = 1, . . . , p, the prior precision is proportional to the Fisher information
matrix of β, and the scalar κ takes on the role of Zellner’s g. The prior on β with
G = I can be viewed as providing the most amount of prior information. Overall,
the parameter gj attempts to balance in between the two extremes and to provide
a reasonable amount of information on β.

2.2. Posterior distribution of G

We now examine the posterior distribution of G and its usage as a shrinkage
parameter. Integrating out β, the posterior G is given by

π(G|y, κ, σ2) ∝ π(G)
∫ [

f(y|β, κ, σ2) × π(β|G, κ, σ2)
]

dβ

∝ |G|a|I − G|a−1|X ′X + κ−1GX ′XG|−1/2×

exp
[

y′X
(
X ′X + κ−1GX ′XG

)−1
X ′y

2σ2

]
,

(2.4)

where a represents the hyperparameter in the iid Beta(a, a) hyperprior on each
gj in (2.1). The intractability creates difficulty in the discussion on the function
of G, much of which involves inverting the matrix

(
X ′X + κ−1GX ′XG

)
. In

this article, we do not pursue the general case in (2.4). Instead, we proceed by
showing (i) an example with p = 2 as an intuitive illustration; and more formally
(ii) a discussion on the usage of G as a shrinkage parameter when the design
matrix is orthogonal.
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For the purpose of illustration, consider a linear model of y = 1 · x1 + 0 · x2 + ϵ,
where the random error is given by ϵ ∼ N(0, I). In other words, the response y
depends on the promising variable x1 but not the unpromising variable x2. Figure
1 provides an illustration of π(g1, g2|y) assuming κ = σ2 = 1. The promising
covariate x1 is associated with g1, and the unpromising covariate x2 is associated
with g2. Note from the figure that the posterior is maximized at the boundary of
g2 with g2 → 1, and g1 close to 0. This observation sheds some light on how the
posterior of G is related to variable shrinkage and selection.

Figure 1. Contour (left) and perspective (right) plot of the posterior of G with p = 2. The
response is given by y = 1 · x1 + 0 · x2 + ϵ with ϵ ∼ N(0, I). Assume κ = σ2 = 1.

Consider the situation under orthogonal design matrix, where

X ′X = diag(x′
1x1, . . . , x′

pxp).

In this case, (2.4) is simplified to

π(G|y, κ, σ2) =
p∏

j=1
π(gj |y, κ, σ2)

∝
p∏

j=1
ga

j (1 − gj)a−1(κ + g2
j )−1/2 exp

[
κ(x′

jy)2

2σ2x′
jxj(κ + g2

j )

]
.

(2.5)

The factorization indicates that the gj ’s are a posteriori independent. Study-
ing each π(gj |y, κ, σ2) from the perspective of the maximum a posteriori (MAP)
estimator, the property of the posterior of gj is summarized in the following propo-
sition.

Theorem 2.2. A promising covariate xj has a corresponding gj close to 0,
where as an unpromising covariate has a corresponding gj close to 1.
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Proof. We give a somewhat heuristic proof here. Without loss of generality,
assume a = κ = σ2 = 1. Then, the posterior density of each gj in (2.5) reduces to

π(gj |y) ∝ gj(1 + g2
j )−1/2 exp

[
(x′

jy)2

2x′
jxj(1 + g2

j )

]

= gj(1 + g2
j )−1/2 exp

[
||y||2 cos2 θj

2(1 + g2
j )

]
,

(2.6)

where ||y||2 = y′y and θj is the angle between xj and y.
Unpromising covariate. For an unpromising covariate xj , it is reasonable to

assume that cos θj = 0. Thus, (2.6) further simplifies to

π(gj |y) ∝ gj(1 + g2
j )−1/2,

which is continous and monotone increasing over (0, 1). Therefore, the MAP
estimator of gj for an unpromising covariate is given by ĝj = arg maxgj

π(gj |y) =
1−.

Promising covariate. For a promising covariate xj , cos2 θj > 0. Since all the
terms on the exponent in (2.6) are positive, exp(·) is a decreasing function of gj

on (0, 1). Therefore, in this case, the posterior of gj is a compromise between
the monotone increasing function gj(1 + g2

j )−1/2 and the monotone decreasing
exponential function. With a moderately large ∥y∥, the decreasing exponential
function becomes the dominant term in (2.6). Since ∥y∥2 =

∑n
i=1 y2

i → ∞ as
n → ∞ except for the trivial case of y = 0, the MAP ĝj → 0 as n → ∞ for the
promising covariate. □

2.3. Posterior distribution of κ and σ2

Lastly, we present the posterior distribution of κ and σ2. By conjugacy, the
posterior of κ is given by

κ−1|y, σ2, G ∼ Gamma(α̃, θ̃),

where

α̃ = p

2 + α

θ̃ = β′GX ′XGβ

2σ2 + θ.

Likewise, the posterior of σ2 also has a closed-form expression, given by

σ−2|y, β, G, κ ∼ Gamma
(

n + p

2 ,
s2

2 + (β − β̂)′X ′X(β − β̂)
2 + β′GX ′XGβ

2κ

)
,

where

s2 =
(

y − Xβ̂(OLS)
)′ (

y − Xβ̂(OLS)
)

.
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3. Numerical examples

In this section, we demonstrate the capability of our proposed method in variable
selection through three examples. The first two examples are simulations taken
from [9], while the third example is real application to the well-known prestige
data set. For each example, we provide both the results based on the proposed
method and a comparison to PIP using the traditional indicator-based method.
The PIPs are computed using the BMS package in R.

The proposed model is fitted using the automated MCMC package JAGS in R.
Our primary concern in writing the JAGS code is to elicit prior distributions for
each gj and for κ. Since we do not possess a priori knowledge of which covariates
would be promising, the prior distribution on gj is simply gj ∼ Beta(1, 1), which
is equivalent to a standard uniform distribution over (0, 1). Similarly, the prior
distribution of κ is given by κ−1 ∼ Γ(α = 10−3, θ = 10−3), where α and θ are
the shape and the rate parameters in the gamma distribution, respectively. This
yields a proper, but fairly flat prior over the support of κ.

Example 3.1. Consider a linear regression with p = 5 predictors, each of
length n = 60, given by x1, . . . , x5 ∼ N60(0, I). The response is

y = x4 + 1.2x5 + ϵ, ϵ ∼ N60(0, 2.52I),
where the “true” regression coefficient vector is β = (0, 0, 0, 1, 1.2)′.

Table 1. Posterior median of gj ’s under the κ-G method and the posterior inclusion probability
(PIP) of [9] in Example 3.1.

x1-x3 x4-x5

κ-G PIP κ-G PIP
0.788 0.204 0.071 1.000
0.775 0.261 0.056 0.966
0.779 0.537

The results are presented in Table 1. Since the posterior distribution of gj is
skewed, we use the posterior median ĝj as the point estimate. Note that small
ĝj ’s correspond to PIPs close to 1, indicating that the associated covariates are
promising. On the other hand, large ĝj ’s correspond to low PIPs, indicating that
such covariates are unpromising. This result verifies Proposition 2.2.

Example 3.2. The second example involves p = 60 predictors, each of length
n = 120, which exhibit moderate correlation. The purpose of this example, as
was well-stated in [9], is to “demonstrate the practical potential (of the proposed
method) for data sets involving many potential predictors”.

For j = 1, 2, . . . , 60, let xj = x∗
j + z, where x∗

j
iid∼ N120(0, I) independent of

z ∼ N120(0, I). This induces correlation of about 0.5 among all xj ’s. The response
is given by

y = Xβ + ϵ, ϵ ∼ N120(0, 22I),
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where β is set to be (β1, . . . , β15)′ = 0, (β16, . . . , β30)′ = 1, (β31, . . . , β45)′ = 2 · 1,
and (β46, . . . , β60)′ = 3 · 1.

Table 2. Posterior median of gj ’s under the κ-G method and the posterior inclusion probability
(PIP) of [9] in Example 3.2.

x1-x15 x16-x30 x31-x45 x46-x60

κ-G PIP κ-G PIP κ-G PIP κ-G PIP
0.901 0.066 0.802 0.210 0.064 0.887 0.039 0.872
0.906 0.278 0.089 0.563 0.051 0.478 0.031 0.987
0.808 0.273 0.779 0.028 0.061 0.065 0.034 1.000
0.894 0.052 0.093 0.528 0.069 0.626 0.052 0.400
0.868 0.044 0.923 0.172 0.045 0.950 0.027 1.000
0.767 0.167 0.132 0.135 0.070 0.109 0.032 0.954
0.860 0.203 0.218 0.173 0.043 0.807 0.042 0.941
0.885 0.036 0.122 0.292 0.065 0.260 0.036 1.000
0.875 0.129 0.211 0.012 0.047 0.293 0.039 0.898
0.846 0.094 0.431 0.452 0.091 0.143 0.036 0.110
0.919 0.043 0.118 0.096 0.058 0.173 0.047 0.798
0.825 0.149 0.794 0.096 0.158 0.047 0.039 0.791
0.879 0.060 0.080 0.391 0.056 0.597 0.043 0.957
0.876 0.229 0.138 0.221 0.049 0.564 0.035 0.981
0.916 0.166 0.180 0.108 0.061 0.093 0.051 0.951

The comparison results between the posterior median ĝj ’s of the proposed
method and PIPs in [9] are provided in Table 2. The four columns correspond
to the four different values of regression coefficients. If one applies a simplistic
decision rule such that a variable is included if g̃j < 0.5, the only false decisions
under the proposed method of this paper are g̃16, g̃18, g̃20, and g̃27, which are
identified as bold in Table 2. On the other hand, if we apply the simplistic rule
that a covariate is deemed promising if the corresponding PIP is greater than
0.5, then almost all covariates between x15 and x30 and more than half of the
covariates between x31 and x45 are unpromising, which contradicts the set-up of
the example. Clearly, within the context of this moderately complex example, the
proposed method is superior than the PIP method in [9].

Further, it is also of interest to compare the estimates of β obtained from
the κ − G method and from the OLS. The results are presented in Table 3. The
estimates of β under the proposed method are the posterior means of each βj . First
note that the Bayesian estimates and the OLS estimates for β1 to β15 do not always
agree on the direction of the coefficient. However, this is not of great concern since
these variables are unpromising based on the results from Table 2. Moreover, as
the true magnitude of βj increases, the differences between the Bayesian estimates
and the OLS estimates vaguely decrease.
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Table 3. Posterior mean under the κ-G method and the OLS estimator of regression coefficients
βj ’s in Example 3.2.

β1-β15 β16-β30 β31-β45 β46-β60

κ-G OLS κ-G OLS κ-G OLS κ-G OLS
-0.522 -0.243 -0.041 1.154 2.004 1.806 2.991 3.098
-0.475 0.110 1.695 1.334 2.937 2.059 3.294 3.225
-0.036 0.266 -0.083 0.870 2.274 1.692 3.293 3.121
-0.245 -0.233 2.120 1.383 2.761 1.842 2.557 2.469
-0.351 0.092 -0.411 0.667 3.173 2.355 3.786 3.285
0.060 0.062 0.929 0.815 2.272 1.973 3.903 3.169
-0.255 0.359 0.682 1.173 3.863 2.615 3.041 2.446
-0.379 0.232 1.316 1.201 2.082 1.737 3.394 3.250
-0.575 -0.385 0.553 0.925 2.022 2.150 3.534 3.241
-0.755 -0.552 0.306 0.932 1.146 2.096 2.899 2.893
-0.694 -0.120 1.107 1.005 1.966 2.006 3.185 2.617
-0.112 -0.036 0.026 0.607 0.631 1.851 3.648 3.170
-0.260 -0.199 1.342 1.152 2.334 2.267 3.420 2.978
-0.431 0.029 1.244 1.262 2.333 1.895 3.640 3.113
-0.437 -0.242 0.729 1.151 1.527 1.569 4.011 3.232

Example 3.3. The third example is an application of the proposed method to
the Prestige data set in the R library car. The data were collected from the mid-
1960s to early 1970s [5]. The data consists of n = 102 different occupations, and
the prestige of each occupation is regarded as response and regressed onto three
predictors: average education of occupational incumbents (x1), average income of
incumbents (x2), and percentage of incumbents who are women (x3).

Table 4. Posterior median of gj ’s and posterior mean of βj ’s in Example 3.3, with comparison
to PIP and OLS.

g̃ PIP β̂ β̂(OLS)

x1 0.017 1.000 3.644 3.553
x2 0.063 1.000 1.284 1.388
x3 0.808 0.236 -0.022 -0.013

Posterior estimates for each gj and βj corresponding to the three predictors are
given in Table 4. As was seen before, the posterior median of each gj agrees with
the posterior inclusion probability, while the posterior mean of βj is reasonably
close to the corresponding OLS estimate.
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4. Conclusion

In this paper, we have demonstrated a new method for Bayesian variable selec-
tion in linear model that is completely independent of the traditional indicator
variable method. The coefficient vector β is given a normal prior of the form
N(0, κσ2(GX ′XG)−1). By injecting the diagonal matrix G to the variance of
the prior, each diagonal element gj in G serves as a variance stabilizer such that
the promising variables are selected based on the gj ’s that are close to 0. Math-
ematically, when the covariates are orthogonal to each other, the gj ’s are a pos-
teriori independent. Within the support of (0, 1), gj is maximized toward 0 if
the associated covariate is promising, and toward 1 if the associated covariate is
unpromising. A posterior point estimator, e.g. the posterior median, can then be
used as a soft threshold indicating the importance of the corresponding predictor
xj . Computationally, this proposed hierarchical model can be readily fitted using
JAGS.

In Section 3, we have demonstrated the usefulness of this methodology through
three examples. The first and third example showed that the proposed method-
ology is capable of yielding correct results when the dimensionality is fairly low.
Moreover, in the second example, we have demonstrated the competence of this
new method not only under mildly large dimensionality, but also under moderate
correlation among the predictors. In fact, we have shown that under such circum-
stances, the proposed method is able to provide even more compelling results than
the traditional indicator variable method.

The proposed methodology possesses great potential for future works. From the
theoretical aspect, theoretical results need to be developed when the predictors are
not necessarily orthogonal. The difficulty in this task involves inverting the matrix(
X ′X + κ−1GX ′XG

)
. Further, in this paper, we have implicitly assumed the

response and the predictors are all continuous. This restriction can certainly be
extended to binary predictors, binary responses, or generalized linear regression
in general.
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