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THE TRADE-OFF BETWEEN GOALS AND UNCERTAINTY OF
OUTCOME IN PROFESSIONAL TEAM SPORTS

KJETIL K. HAUGEN and HALVARD ARNTZEN

Abstract. Based on an assumption of an existing scoring probability difference be-
tween two teams engaged in a football match, the conditional probability distri-
bution given the number of goals in the match for the low quality team beating
the high quality team, is derived. Furthermore, similar distributions for the high
quality team beating the low quality team as well as a draw are also derived. Based
on a Poisson distribution of goals, we discuss a potential for optimizing expected
uncertainty of outcome (UO) by adjusting intra-match rules or league rules for team
sports. The main variables in this regard are (i) the typical number of goals scored,
and (ii) the evenness of competing teams. We identify a curve defining the optimal
expected number of goals as a function of team quality difference.

1. Introduction

In [20], the author discusses scoring rates in sports. It is argued that the probabil-
ity of the weaker football team beating a better team decreases with an increasing
number of goals in a match1. This relates to an important general “design prob-
lem” in sports. How should you design a sport with an optimal number of goals
given that spectator demand is positively dependent on both uncertainty of out-
come and goals? Unfortunately, Wesson [20] does not develop necessary analytical
expressions for some important probability distributions. As such analytical ex-
pressions will be necessary for a formal mathematical modelling of the problem,
this article derives several of these distributions. These are the conditional distri-
bution given the total number of goals in a match for a victory for the low quality
team, victory for the high quality team and the conditional draw distribution.

In the second part of the article, using a match model based on Poisson dis-
tributed goals, we investigate the (perhaps surprising) properties related to the
existence of an optimal number of expected goals with respect to the weak team
winning probability. That is, we contradict Wesson’s claim in [20]. Some results
regarding this optimality are also outlined. The main contribution is the identifi-
cation of a curve defining the optimal expected scoring rate λ for a match, given
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1As our analysis will show, we dispute this allegation – at least to some extent.
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the ratio r of each teams scoring rates. Optimality here refers to maximal uncer-
tainty of outcome (UO) interpreted as the probability of the weaker team winning
the match. We assume that demand for a team sport is positively correlated
with uncertainty of outcome. Based on this curve, we discuss how the demand
for a given team sport can be increased by a redesign targeting increased uncer-
tainty of outcome. In this discussion, we point to two directions where a sport can
“move” to become more interesting for spectators: (i) changing the intra-match
rules to change the expected total goal score (e.g. change the size of the goals or
change the rules to make penalty kicks easier or harder to get), (ii) changing the
league rules to make the teams more (or less) even (e.g., introduce salary caps or
redistribution of ticket value from good to less good teams).

2. A model based on actual goal score

In this section, we deduce the probability distributions for weak win, draw and
strong win given a certain number of goals scored. Two teams, TH and TL, are
engaged in a football match. The two teams are assumed unequal in performance
quality. TH is assumed to have higher quality while TL has lower quality. This
quality difference is formalized through a difference between the teams in scoring
probability. It is assumed that whenever a goal is scored:

p = Pr(TH scores against TL)
(

p >
1
2

)
,

1 − p = Pr(TL scores against TH).

These probabilities are assumed independent of the goals scored up to any time-
point in the match.

Initially, the number of goals scored in the match is restricted to the set of
positive odd numbers; {1, 3, 5, . . .}. This is a simplification, as the draw option is
ruled out2.

So, the output to be established is an analytical expression containing all prob-
abilities that the low quality team, TL, beats the high quality team conditioned
on the number of all possible end-results. That is3:

wo(g) = Pr(TL beats TH | number of goals = g) .

Let us look at some simple examples, (wo(1), wo(3)), to establish the general
distribution. If g = 1 (wo(1)), there is only one goal scored. The probability that
TL wins is then simply 1 − p. It becomes slightly more complex in the wo(3)-case.
Now, there are exactly two options; either TL wins 3–0 or 2–1. The 3–0 situation
is simple. Then, TL scores three goals in succession with a probability of (1 − p)3.
In the 2–1 case, there are three possibilities; either HLL, LHL or LLH, where H
and L denote the scoring sequence. The probability is the same, p(1−p)2 for each
of these options, and the total probability is hence 3p(1 − p)2. As a consequence:

2A similar distribution for even number of goals results is necessary and will be developed
later on.

3Obviously, wo(g) also is a function of p, wo(g, p). We do, however, omit this notation for
the time being, for simplistic reasons.
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wo(3) = (1 − p)3 + 3p(1 − p)2 .

By some relatively simple inductive arguments4, it should be straightforward
to realize that:

wo(g) =

g+1
2∑

i=1

(
g

i − 1

)
pi−1(1 − p)g−i+1, g ∈ {1, 3, . . .} . (2.1)

We are (of course) also interested in the distribution for an even number of
goals. We name the distribution we(g). The case of g = 0 provides a certain draw,
so the probability of TL beating TH is zero given a goalless match.

It turns out that the distribution is quite similar to (2.1). Suppose we investigate
the case of g = 4. Then, either a 4–0 or a 3–1 victory for TL are the only
possibilities. A 4–0 victory has a probability of (1 − p)4, while a 3–1 victory is
established either by LLLH, LLHL, LHLL or HLLL, all with a probability of
p(1 − p)3. Consequently, the total probability in this case is (1 − p)4 + 4p(1 − p)3

or (
4
0

)
p0(1 − p)4 +

(
4
1

)
p1(1 − p)3 .

Hence, the structure for the even goal-case is similar to the odd goal-case, apart
from the simple fact that the summation end subscript must be changed from g+1

2
to g

2 . Then, the distribution can be formulated as:

we(g) =

g
2∑

i=1

(
g

i − 1

)
pi−1(1 − p)g−i+1, g ∈ {2, 4, . . .}.

Now, it is straightforward to see that the two expressions wo(g) and we(g) can be
combined into a common expression, w(g), by:

w(g) =
⌊ g+1

2 ⌋∑
i=1

(
g

i − 1

)
pi−1(1 − p)g−i+1, g ∈ N . (2.2)

The conditional distribution (2.2) is simply a cumulative binomial distribution.
This is perhaps more easily seen by a simple substitution. Setting k = i − 1, (2.2)
can be reformulated as:

w(g) =
⌊ g−1

2 ⌋∑
k=0

(
g

k

)
pk(1 − p)g−k, g ∈ N . (2.3)

As the forthcoming parts of the article will show, the remaining conditional
distributions for a draw and victory of the better team, TH , are also relevant. It
turns out that these two distributions are easily derived. In the case of a victory

4For example, a match with 5 goals must then include terms of the type (1 − p)5, p(1 − p)4

and p2(1 − p)3 with binomial coefficients defining constants in front of these terms
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for TH , it is obvious that a simple interchange of p and 1 − p in the expressions
will do the trick. That is,

v(g) = Pr(TH beats TL|g) =
⌊ g−1

2 ⌋∑
k=0

(
g

k

)
(1 − p)kpg−k, g ∈ N .

Finally, the conditional distribution for a draw is simply found by the probabilistic
“norm to one” condition:

d(g) = Pr(TH and TL plays a draw|g) = 1 − (v(g) + w(g)) , g ∈ N .

To get a taste of what the functions w(g), v(g) and d(g) look like, a plot is given
in Figure 1.

Figure 1. Plots of w(g) (weak win), v(g) (strong win) and d(g) (draw).

Figure 1 shows a characteristic saw-tooth pattern for all functions w(g), v(g) and
d(g). Initially, this may seem a bit strange. After all, why should the probability
of the weaker team beating the better team be higher with an odd rather than
even number of goals? The explanation is banal. Given an odd number of goals
in a football match, the draw option is ruled out and the probability for either
team winning increases when g increases by 1 from an even to an odd number. As
Figure 1 only shows the situation for a given p = 0.67, it still seems worthwhile
to investigate the general situation. We write wo(g, p) and so on to underline the
fact that the functions also depend on p in what follows.

Proposition 2.1. If p > 1
2 and g ∈ N is odd, then wo(g, p) > we(g + 1, p).

The proof of 2.1 is left for Appendix A. Hence, the saw-tooth pattern observed
in Figure 1 is not a special case for the given probability, but holds for any p > 1

2 .
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Another striking feature of Figure 1 is the decaying behaviour of two of the saw-
tooth patterns, ((w(g) and d(g)), as well as the increasing pattern of v(g). One
could attempt a proof5 proposing limg→∞ v(g) = 1. However, as a similar proof
already exists in [17], and the close connection between the two mathematical
models applied here is shown in equation (5.1), such a proof is omitted.

3. A preliminary discussion

The fact that many goals lead to few draws is interesting if sports practice is taken
into consideration. A clear difference is easily observed if we compare American
football with association football6. In association football, there is only one type
of goal, which leads to goal difference as a simple match determination. However,
in American football, at least two different types of goals, field goals and touch
downs, lead to a need for a conversion system between goals and points. As such,
comparing the number of goals in association football with American football is not
straightforward. Still, some simple approximation may be enlightening. According
to [6], the average point score in NFL in the time period from 1976 to 1994 was
40.15 points. In order to convert points to goals, it seems reasonable to use the
share of field goals in NFL. According to [18], roughly 25% of points are earned
as field goals. Given 6 points for a touch down and 3 points for a field goal7, this
leads (roughly) to 10+5 = 15 “goals”.

According to [1], the average goal score in association football has been steady
around 2.75 goals per match in the time period from 1980 to 2020. That is,
American football averages on almost 7 times more goals than association football.
If we look at another typical American team sport, basketball, the number of goals
is even higher. Without going into details, 50 goals is quite common in a match.

The interesting observation comes if we compare association football with US
sports rule-wise. US sports explicitly lack the draw option. The typical mechanism
used is the “sudden-death-principle”. That is, if a match ends in a draw, time is
added until one of the teams scores to define a winner and a loser. This proposes
a kind of paradox. As we have seen already, US sports have far more goals than
association football. However, many goals lead to almost zero draw probabilities.
Why are US sports designed so that draw (rule-wise) is illegal? In practice, it will
almost never happen. The following quote from [14] says it all:

“Donovan McNabb and other Philadelphia Eagles players said –
when the team and Cincinnati Bengals tied 13-13 in 2008 – that
they did not know that a game could end in a tie.”

It does not seem unreasonable to suggest some “sociological-like” explanations.
Perhaps the winner is more important in the US than in Europe? We will leave this

5It follows trivially that limg=∞ d(g) → 0.
6American football (sometimes also named gridiron football) is mainly performed in the US,

in the National Football League (NFL), while association football is performed in Europe, Latin
America and almost everywhere else.

7The actual point rules in NFL are a bit more complex. There are, for instance, options
for extra points. As we are basically interested in magnitude comparisons, we accept this
approximation.
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discussion here and will merely point to some research discussing the differences
between US and European sports along similar lines – see, for instance, [8].

The fact that the winning probability, v(g), of the better team approaches 1 as
g approaches ∞ is also interesting. In fact, we could also here identify a some-
what paradoxical situation. As pointed out above, US sports are characterized
with many more goals than the most popular European team sport counterpart,
association football. Then, with the knowledge of many and varied US means to
enhance competitive balance (increase UO) – Reverse drafting [22], salary caps [12]
and gate revenue sharing [19] – it may seem slightly odd that US sports contain
many goals. Why design sports with many goals in the first way, producing low
UO (as argued above) and then introduce regulations to increase UO? Of course,
this is not the true story. The design process of US sports was most probably not
done with notion of the UO concept. Still, it may be of interest today when sport
redesign may be necessary. After all, it is not practically complicated to reduce
the number of goals/points, for instance, in basketball. A simple lift of the basket
will do the trick.

4. The probability of the weaker team beating the stronger team is
not overall decreasing

One can be led to believe, by Wesson [20], that the probability of the weaker team
beating the strong team is generally decreasing as the number of goals increase.
Some basic calculations based on our simple model show that this is only true in
an asymptotic sense; for a given strong team scoring probability p there is a goal
score g > 0 that maximizes the weak win probability. We can see this in Figure 2,
where it is readily observed that the probability function is uni-modal and hence
both increasing and decreasing.8 This is an interesting point, which deserves some
additional comments.

This fact is relevant for the Uncertainty of Outcome (UO) concept. This con-
cept, formally introduced by Rottenberg [16], simply states that sports spectators
should (logically) be less interested in competitions where the predictability of the
result is high. After all, who would pay to watch a football match if one knew
the end-result beforehand? This so-called Uncertainty of outcome hypothesis is
a favourite subject for many sports economists, and has consequently gained a lot
of attention in sports economic research. See, for instance, [2] for an excellent
survey on relevant research.

The reason for this point’s relevance here is the obvious fact that the probability
that a weaker team beats a stronger team may be a good micro (or ex-ante)
definition of the concept itself.

In traditional sports economic literature, the UO concept is largely defined ex-
post. That is, most attempts to measure UO is based on information available after
the competition or the match (or the matches in a league situation) is finished. See,
for instance, [3] for a good review of various ex-post UO measurement techniques.
However, here, as we have developed a probability distribution for the weaker team
beating the stronger team, depending on the initial (ex-ante) probabilistic quality

8We have only included even scores g here to avoid cluttering the picture with saw-teeth.
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Figure 2. Plots of we(g) for various p’s. (Note that points identifying probabilities are piece-
wise linearly connected only for presentation purposes.).

difference between the teams, {p, 1 − p} and the number of goals in a match g, we
can think of an ex-ante definition of UO. That is, UO is high if we(g, p) is high;
low if we(g, p) is low.

The fact that this probability, according to Figure 2, has a maximum as a func-
tion of g is by itself interesting. After all, if UO is important for demand of a given
sport, the existence of a maximal UO for a given goal number may be of relevance
in sport design. Hence, it is of relevance to investigate this possible optimality
further.

Unfortunately, our initial discrete model is not well suited for such an inves-
tigation, so we shift to a more traditional mathematical modelling approach for
the continued analysis. It is well worth pointing out that the proposed optimality
discussed above is mentioned briefly in [17], but not explicitly analysed.

5. A formulation using Poisson distributed goal scores

We can model the number of goals scored for two teams in a match by independent
Poisson distributed random variables X1, X2 with parameters λ1, λ2. We assume
team 1 is the weaker team so that λ2 = rλ1 for some r > 1. We let λ = λ1 + λ2
denote the expected total number of goals in the match. From this, we trivially
get

λ1 = λ

1 + r
, λ2 = rλ

1 + r
.

This modelling approach corresponds to the model used previously, where the
parameters are related by



126 K. K. HAUGEN and H. ARNTZEN

p = λ2

λ1 + λ2
= r

1 + r
. (5.1)

We can write Z = X1 − X2 for the goal difference, so that Z > 0 represents
a win for the weak team, Z = 0 represents a draw and so on. The variable Z
is known to have a Skellam distribution with parameters λ1, λ2 given by discrete
probabilities

Pr[Z = z] = exp(−(λ1 + λ2))
(

λ1

λ2

)z/2
Iz

(
2
√

λ1λ2
)
, z ∈ Z9 ,

where Iz(x) denotes the modified Bessel function of the first kind, see [11] and
references therein for more details. For simplicity, we will stick with the assumption
of independent goal scores here. However, we note that the Skellam distribution
for Z is still valid under certain forms of correlated scores, as demonstrated in [11].

We will first consider the question of how the probability of a weak win depends
on the total expected score λ and the ratio of the teams’ scoring rates r. So now,
let w(λ, r) = Pr[Z > 0] denote this probability. In terms of λ, r, the probability
distribution for Z can be expressed by

Pr[Z = z] = exp(−λ)r−z/2Iz(2λ
√

r

1 + r
), z ∈ Z .

As it appears challenging to derive analytical results based on the above formula,
we can use numerical computations10 to visualize the function w. In Figure 3, we
see w as a function of λ for a set of fixed values of r. What we see is that the
function has a maximum value for some λ(r) depending on the ratio r of the
scoring rates. In particular, when the teams are relatively even in strength, the
maximum appears for a fairly large value of λ, e.g. when r = 1.20, the strong
team has a 20% higher scoring rate, and in this case the weak team has a maximal
winning chance when the expected number of goals is about 6. It is therefore
not true that an increasing number of goals generally reduces the UO. Roughly
speaking, if one were to maximize the UO (in the sense of the weak team winning
probability) when r is about 1.20, one should design the game so as to have about
6 expected goals. The figure moreover shows that when λ is close to 0, the weak
team almost never wins. This is, of course, because almost all games end 0–0. In
the other direction, for any value r > 1, the probability w(λ, r) will ultimately
decrease and approach 0, because with an increasing number of goals, the law of
large numbers will benefit the stronger team.

In the same context, it may be interesting to look for the λ value that maximizes
w(λ, r) as a function of r, i.e., the function

λ∗(r) = arg max
λ

w(λ, r) .

This function is shown in Figure 4, where we have used r = 1.10, 1.20, . . . , 5.0
and then found the maximizing λ numerically. We can read from this picture
that when the teams are fairly even in strength (r close to 1), the weak team

9Set of integers.
10Using the skellam [13] and tidyverse [21] packages for the programming language R [15].
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Figure 3. Plots of w(λ, r) for various r’s.

winning probability is maximized in a game with a relatively high number of goals.
When the strong team is substantially stronger, the maximizing λ decreases. Our
computations indicate that

lim
r→∞

λ∗(r) = 1 .

The interpretation of this is that even in a grossly uneven match, there has
to be some expectancy of goals being scored for the weak team to maximize its
winning probability.

6. Discussion and conclusions

In addition to the derivation of some potentially useful probability distributions,
the main novelty in this paper is the content of Figure 4. In layman terms,
this figure displays a relation between maximal uncertainty of outcome and the
(expected) number of goals in any team sport. Hence, it gives information (and
potential decision support) related to sports design and redesign. One can perhaps
think of it as a means for deciding how many goals are needed to reach maximal
uncertainty of outcome for a given sport, when the average ratio of scoring rates
r is given.

In practice it is hard to deal with the term “optimal uncertainty of outcome”.
However, for the most important global team sports, most US team sports, as well
as European handball and association football, the typical problem is rather lack
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Figure 4. Plot of λ∗(r).

of UO than too much UO11. In the US team sport case, the existence of regulative
means obviously introduced to increase UO leads (empirically) to a conclusion of
too low UO. In European handball as well as association football, several research
papers point to a situation with diminishing UO, potentially with adverse demand
effects. See, for instance, [9, 10].

To gain more insight into the potential decision support potential of Figure 4,
it will prove worthwhile to note the following: If we move back to section 1, p was
defined as the probability that the strong team scores against the weak team. In
a UO-perspective, this leads to increased UO (higher 1−p) if p decreases. By (5.1),
a decrease in p leads to a decrease in r. That is, moving to the left in Figure 4
means increased UO.

In order to continue, we need to address demand for sports. According to [2],
demand (or spectator willingness to pay) for sports products depends on many
factors. Still, it seems evident that the two (perhaps) most important factors are
UO and performance quality. That is, spectators consume more sports products
if David may beat Goliath (UO) and if the performance is high (possible world
record on 100 meters running). In the team sports we discuss here, a classical
proxy for performance are goals – good goals, bad goals, many goals. Hence, it
seems reasonable to assume that demand is positively related to both goals g (or λ
in the last mathematical model) and UO. That is, d = d(λ, r) and ∂d

∂λ > 0, ∂d
∂r < 0.

As a consequence12, moving to the left and upwards are “good moves” in Figure 4.

11A classical example of too much UO may be ski-jumping where the introduction of the so
called V-style led to such wind dependence that many competitions resembled coin tossing. In
that situation the excess UO had to be removed by introduction of a wind compensation system.

12This argument also needs an assumption that it is in the best interest of the sports manager
to maximise d. In our opinion, a reasonable assumption.
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Now, let us assume that we investigate some sport, say association football.
Information to estimate λ and r (or p) is readily available both at global and more
regional levels.

It will most likely not be the case that we land on the curve in Figure 4, i.e.,
the estimated point (λ̄, r̄) will be somewhere not on the curve. As indicated in
Figure 5, two possible situations may occur, either below or above the curve, so
we have O1 or O2.

Figure 5. Parts of Plot of λ∗(r) with (thought) empirical observations, O1, O2..

If O1 is the case, the objective (d(r, λ)) can be improved by moving in the
direction of the horizontal arrow. Here, the number of goals is kept constant while
UO is increased. To achieve such a movement (in practice), some means like gate
revenue sharing, salary caps or similar must of course be imposed to make teams
more even (without altering the intra-match rules).

If alternatively O2 is the case, a movement upwards can be achieved (the vertical
arrow in Figure 5) by increasing the number of goals without changing relative
team strengths. To actually increase the number of goals, some practical changes
in match rules will typically be necessary. Lowering the basket in basketball or
increasing the goal size in association football are some obvious possibilities.

In summary, we have relied on very simple models in our analyses and discus-
sions, and it may be argued that such models are too simple to be of value – see,
for instance, [4, 5, 7]. We still believe that the relationship depicted in Figure 4
exists, and that our model approximation may be reasonably close to the real
function. We believe that a further study of this relationship can be valuable as
an additional means to increase demand for team sports.

Appendix A. Proof of Proposition 2.1

Proof. If g is an odd integer, and p > 1/2, we want to prove that
w(g, p) > w(g + 1, p).
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We will use the expression from equation (2.3), and since g is odd, we get

w(g, p) =

g−1
2∑

k=0

(
g

k

)
pk(1 − p)g−k

w(g + 1, p) =

g−1
2∑

k=0

(
g + 1

k

)
pk(1 − p)g−k+1 .

The sums have the same number of terms, so we can compare term by term and
show that for any p > 1/2,(

g

k

)
pk(1 − p)g−k >

(
g + 1

k

)
pk(1 − p)g−k+1 . (A.1)

We can use the fact that (
g + 1

k

)
= g + 1

g − k + 1

(
g

k

)
.

Substitute this into (A.1) to get the equivalent inequality

1 >
g + 1

g − k + 1(1 − p) . (A.2)

The right hand side is maximized for any g by

p = 1
2 , k = g − 1

2 ,

so we get
g + 1

g − k + 1(1 − p) <
g + 1

g − g−1
2 + 1

· 1
2 = g + 1

g + 3 < 1,

which demonstrates (A.2) and hence the proposition follows.
□
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