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ON SOME SIMILARITIES AND DIFFERENCES BETWEEN
DEEP NEURAL NETWORKS AND KERNEL LEARNING

MACHINES

EDDIE PEI and ERNEST FOKOUÉ

Abstract. This paper presents a thorough computational comparison of the predic-
tive performances of deep neural networks and kernel learning machines. The work
featured here successfully establishes that on both real-life datasets and artificially
simulated ones, kernel learning machines tend to be just as good as deep neural net-
works, and quite often outperform them predictively. It turns out from the findings
of this paper that while deep neural networks might have worked well on tasks for
which millions of observations are available, kernel learning machines just happen
to be predictively better on a wide variety of tasks with the kind of sample size that
one should realistically expect to have in practice.

1. Introduction

Deep learning allows computational models that are composed of multiple process-
ing layers to learn representations of data with various levels of abstraction. These
methods have dramatically improved the state-of-the-art in speech recognition, vi-
sual object recognition, object detection, and many other domains such as drug
discovery and genomics [33]. It is a fact that deep neural networks have recently
gained tremendous popularity thanks mainly to their huge success in applica-
tions such as computer vision, image processing, object detection, face recogni-
tion, automatic speech recognition, speech synthesis, self driving cars, just to
name a few [33, 43]. As a matter of fact, since their inception in the mid-1980s,
neural networks have helped with solving a wide variety of significant problems
[1,13,19,23,30,31,33,36,43,45,46]. From a methodological perspective, deep neural
networks have also infused new energy into the statistical machine learning and ar-
tificial intelligence fields, specifically inspiring the inventions and discoveries of new
methods and techniques. Despite all the above instances of success of deep neural
networks and deep learning, it is important to remember that many other methods
predated deep learning, with kernel learning machines being the most prominent
of those. With the tremendous popularity of deep learning causing some practi-
tioners and researchers to mistakenly surmise that deep neural networks are the
holy grail of data science and artificial intelligence, we have deemed it of great in-
terest to conduct a comprehensive comparison of predictive performances of deep
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neural networks against kernel learning machines. Specific questions inspired and
guided our comparisons, namely:
• What are the similarities and dissimilarities between neural networks and kernel

learning machines?
• What is the computational and methodological price deep neural networks need

to pay to achieve what is known as their spectacular superiority in a wide range
of applications?

• Even more crucially, is it the case that deep neural networks outperform Kernel
machines across all possible datasets?

Throughout this paper, we focus solely on supervised learning, with equal emphasis
on classification and regression. Specifically, we consider an input space X and
an output space Y , and we seek to build learning machines

f : X −→ Y

that capture the relationship between the elements of X and those of Y . Typ-
ically, a huge part of the statistical machine learning process consists of choos-
ing/selecting function space or hypothesis space H from which the learning ma-
chine f is drawn, i.e., f ∈ H , with H ⊂ Y X . Note here that Y X is the universal
space of all possible functions (mappings) from X to Y . Using the nomenclature
from [16,17], the learning process proceeds by using random sample

Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, . . . , n}, (1.1)

along with the suitably chosen function space H to empirically construct esti-
mators f̂H ,n ∈ H of f . It is important to note that all datasets throughout
this paper will be assumed to be random samples generated/drawn according to
the joint probability density/mass function pxy(x, y) appearing in (1.1). Now, the
process of building f̂H ,n from Dn via some optimization method or algorithm
A (Dn; H ,Λ) is the learning process. In a sense, the actual realized learning
machine f̂H ,n is the output of the algorithm used, so that

f̂H ,n := A (Dn; H ,Λ),

where Λ at this point generically denotes the collection of all hyperparameters.
The theoretical framework of which A (Dn; H ,Λ) is a manifestation is the so-
called theoretical risk minimization principle which is based on the definition of
the theoretical risk functional R(f) representing the population error made by
a learning machine (function) f ∈ Y X . The theoretical risk functional is

R(f) = E
[
L(Y, f(X))

]
=
∫

X ×Y

L(x, y)pxy(x, y) dxdy, (1.2)

where L(·, ·) is the loss function. The loss function plays a central role in statistical
machine learning, as it helps with the evaluation of how well the machine learning
model fits the data. More rigorously, a loss function L(·, ·) is a nonnegative bi-
variate function L : Y × Y −→ R+ such that, given a, b ∈ Y , the value of L(a, b)
measures the discrepancy between a and b, or the deviance of a from b, or the loss
incurred from using b in place of a. For classification learning, the natural loss
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function is the so-called zero One Loss defined as follows:

L(y, f(x)) = 1(y ̸= f(x)) =
{

0 if y = f(x),
1 if y ̸= f(x).

For regression learning, the most commonly used loss function is the so-called
squared error loss, defined as follows:

L(y, f(x)) = (y − f(x))2.

Although these two functions are the most commonly used in their respective
contexts when it comes to evaluating learning machines, many other loss functions
exist and are used for a wide variety of specific machine learning scenarios deemed
more suitable. Given a suitable chosen loss function along with the risk functional
defined in (1.2), one ideally wants to find the universal best function f⋆ ∈ Y X

that minimizes the risk over all possible functions, i.e.,
f∗ = arg inf

f∈Y X

{
R(f)

}
= arg inf

f∈Y X

{
E[L(Y, f(x))]

}
. (1.3)

Partly due to the fact that the universal space Y X is infinitely large, and also
crucially to the fact that pxy(x, y) is never known in practice, the ideal universe
best f⋆ of (1.3) is never known in practice. Instead, a slightly less intangible way
to compare functions (learning machines) is to define the risk function within the
function class H , namely

RH (f) = E
[
L(Y, f(X))|f ∈ H

]
=
∫

X ×Y

L(x, y)pxy(x, y) dxdy,

and seek f⋆
H ∈ H such that

f⋆
H = arg inf

f∈H

{
RH (f)

}
. (1.4)

Note that f⋆
H ∈ H is not as universal as f⋆ ∈ Y X because the former is re-

stricted to the function space H while the latter has no restriction, being univer-
sal. Throughout this paper, (1.4) will play a central role, because we will consider
different function spaces, and it will be of interest to find out which one performs
better. For clarity, given two function spaces H1 and H2, we would prefer H1
over H2 as the realized best function from H1 has smaller theoretical risk than
the realized best function from H2. In other words,

If R⋆
H1

< R⋆
H2

choose H1, (1.5)
where R⋆

H1
= RH1(f⋆

H1
) and R⋆

H2
= RH1(f⋆

H2
). Specifically, in this paper, we are

interested in two function spaces, namely the function space HDNN of deep neural
networks and the function space HKLM of kernel learning machines. As stated
earlier, our overarching goal in this paper is to find out if

R⋆
HDNN

< R⋆
HKLM

. (1.6)
It turns out that checking the inequality in (1.6) as it is constitutes a gigantic
theoretical task far beyond the scope of this paper, partly due to the fact that
the theoretical manipulations involved are either not even known yet or are very
complex. Rather than seeking to compare the true risks for each of the function
spaces, the paper adopts the comparison of various statistics around the test error
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computed from the given data Dn. Recall that RH (f) for a function space H
is the generalization error or true error of f in space H . Stochastic Hold Out is
widely used for estimating the generalization error of statistical machine learning
models as discussed in [17]. As depicted in Algorithm 1, the given dataset Dn is
randomly split into a training and test repeated, and summaries of the replicas of
the test error are used as estimates of the generalization error.

Algorithm 1: Stochastic Hold Out for Generalization
for s = 1 to S do

Generate the sth random split of Dn into D
(s)
tr and D

(s)
te such that and

|D (s)
te | = (1 − τ)|Dn|

and Dn = D
(s)
tr ∪ D

(s)
te , and n = |Dn| = |D (s)

tr | + |D (s)
te |

for m = 1 to M do
Build and refine the mth learning machine f̂ (D(s)

tr )
m (·) using D

(s)
tr

Compute predictions f̂ (D(s)
tr )

m (xi) for zi ∈ D
(s)
te

Compute the test error for the mth learning machine

ε̂sm = R̂te(f̂ (s)
m ) = 1

|D (s)
te |

n∑
i=1

1(zi ∈ D
(s)
te )L(yi, f̂

(D(s)
tr )

m (xi))

Essentially then, given a dataset Dn and a collection of potential function spaces
H1,H2, . . . ,HM , we set a number S of replications (splits), along with a propor-
tion τ ∈ (0, 1/2) of the data Dn, to be allocated to the test set at each split. Upon
splitting S times using D

(s)
n = D

(s)
tr ∪ D

(s)
te , we create for each dataset Dn, the

matrix E of realizations of the test error as seen in (1.7).

E =



ε11 ε12 · · · ε1m · · · ε1M

ε21 ε22 · · · ε2m · · · ε2M

...
...

...
...

...
...

εs1 εs2 · · · εsm · · · εsM

...
...

...
...

...
...

εS1 εS2 · · · εSm · · · εSM


(1.7)

For further clarity, it is important to see for the matrix E that

εsm = R̂te(f̂ (s)
m ) = te(f̂ (D(s)

tr )
m )

= Error of f̂ (D(s)
tr )

m (·) on D
(s)
te .

where

R̂te(f) = 1
|Dte|

n∑
j=1

L(yj , f(xj))1(zj ∈ Dte),

and crucially, f̂ (D(s)
tr )

m is the best learning machine from function space Hm, learned
using the sth training split D

(s)
tr along with refinement and model selection via
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V -fold cross validation.
f̂ (D(s)

tr )
m := arg min

f̂∈Hm

{
CV(f̂ ; D (s)

tr )
}

It is worth repeating here that εsm, which is the realized test error of the mth
learning machine on the sth replicate (split) of the data Dn, is the most important
ingredient for our overarching goal. In order to perform as thorough and complete
a comparison of the estimated generalization errors as possible, we consider several
statistical summaries of the values of εsm, s = 1, . . . , S, m = 1, . . . ,M . As will
be seen in Section 5, we will consider, for each data set, an empirical counterpart
of the theoretical generalization errors defined in Equation (1.5), namely, we will
define

score(Hm|Dn) := R̂⋆
Hm

:= Empirical counterpart of R⋆
Hm

given Dn.

For regression learning tasks, we end up considering the following scores. Since we
do consider several different datasets in the spirit of testing the so-called no free
lunch theorem (NFLT), it makes sense to reveal the dataset in the expression of
εsm, maybe by writing ε(Dn)

sm .

(1) Average Test Error Criterion

score(Hm|Dn) := 1
S

S∑
s=1

ε(Dn)
sm .

(2) Median Test Error Criterion

score(Hm|Dn) := median
s=1,...,S

{ε(Dn)
sm }.

(3) Maximum Test Error Criterion

score(Hm|Dn) := max
s=1,...,S

{ε(Dn)
sm }.

(4) Minimum Test Error Criterion

score(Hm|Dn) := min
s=1,...,S

{ε(Dn)
sm }.

For any given data set, we will use the above scores as our criteria, and we will
declare as winner the hypothesis/function Hm with the smallest score(Hm|Dn).
For classification learning tasks, we will use the same criteria as in regression
learning, but this time the test accuracy will replace the test error, namely

π(Dn)
sm := 1 − ε(Dn)

sm .

Of course, this time, the winner be will the hypothesis space Hm with the highest
score. Equipped with all the above scores and criteria, this paper ultimately per-
forms an empirical comparison of the generalization performances of kernel learn-
ing machines against deep neural networks. We use a wide variety of datasets
differing in size, shape, and data types, with the finality of finding out if there is
any evidence that deep neural networks are predictively better across all datasets
as claimed by some practitioners and researchers. For thoroughness and com-
pleteness, we include both simulated data and real-world data; we also consider
datasets covering many different areas, including medicine, biology, economics
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and transportation, just to name a few. This paper does not focus on the method-
ological and technical subtleties of deep neural networks and their corresponding
estimation and prediction mechanisms of deep learning. However, our thorough
empirical comparisons of the predictive performances of the machines do provide
useful insights into their respective strengths and weaknesses, which we deem of
paramount importance to practitioners and researchers. The rest of this paper is
organized as follows: Section 2 provides a standard description of the architecture
of deep neural networks along with some elements of their fundamental character-
istics. Section 3 touches on the general description of the kernel machines explored
in this paper, focusing on Gaussian process-inspired learning machines and sup-
port vector machines. Section 4 features some theoretical results and relationships
mentioned earlier between deep neural networks and kernel learning machines.
Section 5 gives a detailed description of the experimental setup of our extensive
computational comparisons, focusing on the effect of the ratio of the sample size to
the dimension of the input space, on the one hand, and the sheer diversity of entire
data sets on the other. Section 5 presents the metrics used in our comparisons of
predictive performances. Section 5 also presents the detailed computations with
the actual comparisons of predictive performances and all the relevant correspond-
ing comments. Section 6 presents our discussion and conclusion and the points we
intend to explore in our future work on this fascinating and fast-developing theme.

2. Neural networks learning machines

According to the comparison criterion defined in Section 1, namely (1.5), we need
to define the function space that characterizes deep neural networks (DNN). Using
the input space X and the output space Y , the function space that characterizes
a generic DNN is given by (2.1) below:
Hdnn :={

x 7→ ψ(W (L+1)ψ(W (L)ψ(· · · W (2)ψ(W (1)x + w(1)
0 ) + w(2)

0 ) · · · ) + w(L+1)
0 )

}
,

(2.1)

where ψ(·) is the so-called activation function, herein applied vector-wise on the
output from the previous layer. These activation functions, especially the ones
appearing in the hidden layers, are intended to help capture nonlinearities. The
activation vector a(ℓ) = (1, a(ℓ)

1 , a
(ℓ)
2 , . . . , a

(ℓ)
m , . . . , a

(ℓ)
dℓ

)⊤ in the ℓth layer allows the
component-wise transformation

z(ℓ)
m = w(ℓ−1)

m,0 +
dℓ−1∑
c=1

wm,c
(ℓ−1)a(ℓ−1)

c ,

which is simply written in vector form as
z(ℓ) = W (ℓ−1)a(ℓ−1), where a(ℓ)

m = h(ℓ)(z(ℓ)
m ).

More succinctly, h(ℓ)(z(ℓ)) = ψ(W (ℓ)z(ℓ) + w(ℓ)
0 ). These latent quantities play

a central role in the neural networks learning paradigm. It turns out that one
of the most challenging bottlenecks with deep neural networks stems from the
sheer large numbers of weights to be learned/estimated. In fact, in (2.1), the
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collection θ := {W (ℓ) : ℓ = 1, . . . , L+ 1} of all the weight matrices forms the set
of parameters for the corresponding DNN model.

W (ℓ) =



w(ℓ)
1,0 w(ℓ)

1,1 w(ℓ)
1,2 · · · w(ℓ)

1,c · · · w(ℓ)
1,dℓ−1

w(ℓ)
2,0 w(ℓ)

2,1 w(ℓ)
2,2 · · · w(ℓ)

2,c · · · w(ℓ)
2,dℓ−1

...
...

... · · ·
. . . · · ·

...
w(ℓ)

m,0 w(ℓ)
m,1 w(ℓ)

m,2 · · · w(ℓ)
m,c · · · w(ℓ)

m,dℓ−1
...

...
... · · ·

. . . · · ·
...

w(ℓ)
dℓ,0 w(ℓ)

dℓ,1 w(ℓ)
dℓ,2 · · · w(ℓ)

dℓ,c · · · w(ℓ)
dℓ,dℓ−1


.

Considering the “parameter” set θ for deep neural networks, one of the most
immediate remarks about deep neural networks has to do with their complexity or,
more simply put, their size or number of parameters needed to be estimated from
the data. Clearly, given that each weight matrix W (ℓ) is potentially quite large
even for modest tasks, it is often the case that θ has a typically very large number
of entries even for very moderate values of L since each W (ℓ) is itself already a large
dℓ × (dℓ−1 + 1) matrix. If dim(X ) = q, and dim(Y ) = r, and dim(Zℓ) = dℓ, then,
for a DNN with L hidden layers, θ will have p = q+r+

∑L
ℓ=1 dℓ × (dℓ + 1) entries,

at least a priori. Now, given a data set

Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, . . . , n},

the only hope of learning a unique DNN rests on having n > p, i.e., more observa-
tions than parameters needed to be estimated. In fact, p is typically very large for
DNN it is important to have astronomically large amounts of data in deep learning.
It is crucial to note that for many tasks of great interest to practitioners, one will
typically have situations where n ≪ p, putting a dent on the potential for DNN
to be the right method for such tasks. The activation function is a critical part
of deep neural networks. Numerous activation functions have been traditionally
used. The logistic sigmoid ψ(u) = 1/(1+e−u), which is one of the most commonly
used activation functions. One of the newest activation functions called the ReLU
is defined by [38]:

ψ(u) = max(0,u) = (u)+,

preferred because of the efficiency of computation inherent in its use. Now, for
a given regression training data set

Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, . . . , n}

and the loss function L(y, f(x; θ)), we want to solve

minimize
θ

{ 1
n

L[yi, f(xi,θ))] + λJ(θ)
}
,

where λ is a tuning/regularization hyperparameter, and J(θ) is a regulariza-
tion/penalty term. Dropout is a form of regularization that is heuristically im-
plemented by randomly setting some of the weights to zero to avoid overfitting.
Dropout is more effective than other standard computationally inexpensive regu-
larizers, such as weight decay, filter norm constraints and sparse activity regular-
ization. Dropout may also be combined with other forms of regularization to yield
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a further improvement [21]. Even though dropout appears to work quite well for
many DNN architectures, [37] just recently established that dropout fails to reg-
ularize for nonparametric learners. Partly in response to the challenges paused
by the complexity of deep neural networks, especially in training, different types
of neural network architectures have been invented including reservoir comput-
ing learning machines, of which echo state networks are a well known example.
[51] provide a quick review of the fundamentals of echo state networks as well as
a characterization of the statistical and probabilistic properties of the weights of
the hidden layers.

3. Kernel learning machines

In the late 1990s, kernel methods and kernel learning machines gained tremen-
dous popularity thanks to Support Vector Machines, Gaussian Process and Radial
basis function networks and relevance vector machines a bit later. Kernels and
kernel learning machines became so popular that researchers sought to “kernel-
ize” as many existing methods as possible, leading to powerful machines as kernel
PCA, kernel kMeans, kernel CCA, kernel regression, just to name a few. In fact,
kernels have now touched both supervised and unsupervised learning very deeply,
extending even to reinforcement learning and beyond. Kernels have served as the
backbone of many data science methods since their very inception [18]. It is worth
noting that kernel learning has also been applied to ranking regression [22]. The
key lies in the fact that kernel methods consist internally of a transformation of
the data into some feature space that usually has a relatively larger dimension.
Even though the dimension gets larger, [4] shows that the capacity of a general-
ization depends on the geometrical characteristics of the training data, and not on
the dimension of the input space. Interestingly and somewhat crucially, the direct
use of a kernel function reduces the complexity of finding the mapping function
[7, 15, 29]. This is known as the kernel trick. Kernel functions allow the implicit
computation of the feature space calculations with the function defined in the in-
put space. Kernels are used such that a point in the dataset will affect the nearby
points more than it affects the further away points. This is the reason why kernels
in the sense that we use them in this paper are essentially measures of similarities.
For the purposes of the overarching goal of comparing the predictive performances
of learning machines, it turns out that, with suitable geometrical characteristics,
the generalization error could get smaller with the suitable kernel even though the
feature space has a large dimension. What do we really mean by a kernel? It is
important to clarify this because the word kernel means different things even in
different areas of the same field of Mathematics. Throughout this paper, a kernel
K is a bivariate function defined on the input space. For our purposes, it measures
the similarity between two given elements from X . In that sense, the kernel K(·, ·)
is defined as

K : X × X −→ R+

(xl,xm) 7−→ K(xl,xm).



INTERFACE OF DNN AND KLM 83

The so-called Gaussian radial basis function kernel is given by
K(xl,xm) = exp

(
−γ∥xl − xm∥2) = exp

(
−γ(xl − xm)⊤(xl − xm)

)
.

This is the most used kernel, viewed as a general purpose kernel typically resorted
to as the default kernel by practitioners. γ, in this case, is a function of the
bandwidth. Many other kernels exist, some of which will be used in Section 5.
Once a kernel K is chosen for the task of interest, the so-called Gram matrix
K = (K(xl,xm)), l,m = 1, . . . , n is formed and constitutes the most important
object from then on. It is easy to see that the Gram matrix K plays a role similar
to the design matrix or data matrix X in linear models.

K :=



K(x1,x1) K(x1,x2) · · · K(x1,xn)
K(x2,x1) K(x2,x2) · · · K(x2,xn)

...
... · · ·

...
K(xi,x1) K(xi,x2) · · · K(xi,xn)

...
... · · ·

...
K(xn,x1) K(xn,x2) · · · K(xn,xn)


.

Some learning machines like support vector machines do indeed require the ker-
nel to be positive definite in order to guarantee many convergence and stability
properties of the learning process. Just like we did before with neural networks in
Section 2, it is important to specify what the function space looks like when one
is dealing with kernel learning machines. Given a dataset

Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, . . . , n}

and a suitable chosen kernel K, the corresponding function space is given by

Hklm := HK :=
{

x 7→ φ
( n∑

j=1
wjK(x,xj) + w0

)
, w0 ∈ R, wj ∈ R, j ∈ [n]

}
,

φ(v) = v for regression or φ(v) = sign(v) for binary classification with labels
{−1,+1}. From a pure representation point of view, regression and classification
are not structurally different when it comes to kernel learning machines. Of course,
the actual mechanics of learning can differ quite substantially in some cases, espe-
cially because the change of loss functions can result in substantial changes in the
learning process. The actual development of kernel learning machines is beyond
the scope of this paper. We will simply evoke and use all the kernel learning ma-
chines of interest in the final forms. It is worth noting immediately that for any
f ∈ Hklm, we have

f(x) = φ

 n∑
j=1

wjK(x,xj) + w0

 , (3.1)

so that any kernel learning machine in the sense intended in this work has at most
n + 1 weights playing the role of “parameters”. All the kernel learning machines
used throughout this research are of the form depicted in Equation (3.1), regardless
of whether the task is regression or binary classification. Multiclass classification
is handled slightly differently but with exactly the same main foundational form
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as its chief building block. Kernel methods provide very powerful tools in the
portfolio of statistical machine learning techniques. As a matter of fact, many
algorithms can operate and indeed have operated with kernels as we mentioned
earlier. It is well-known that the very popular support vector machines (SVM)
are kernel learning machines. However, for our purposes, we will also consider
Gaussian processes that are powerful kernel learning machines in their own right.
Both of these will ultimately be compared to deep neural networks in Section 4
and Section 5. Support Vector Machines (SVM) are popular machine learning
tools for both classification and regression. They were invented by Vladimir Vap-
nik and Alexis Chervonenkis, and later developed and expanded by several other
researchers around the world, after they were found to be extremely powerful
on several difficult problems, especially in high dimensional tasks [8, 14, 44]. For
a binary classification problem, support vector machines are expressed as follows:

f̂SVM(x) = sign
(

n∑
i=1

α̂iyiK(xi,x) + ŵ0

)
α̂i, i = 1, . . . , n are the Lagrange multipliers used on the constrained optimization
task that defines the celebrated Support Vector Machine. The α̂i, i = 1, . . . , n
are estimated via quadratic programming. Those vectors xi for which α̂i ̸= 0
correspond to the support vectors that gave the name to the machine. f̂SVM(x) ∈
{−1,+1} is the kernelized binary classifier’s predicted label for the input x whose
true label y is being predicted. The support vector regression learning machine is
of the following form:

f̂SVM(x) =
n∑

i=1
(α̂i − α̂⋆

i )K(xi,x) + ŵ0,

where α̂i, α̂
⋆
i , i = 1, . . . , n are once again the Lagrange multipliers just like be-

fore and are estimated via quadratic programming. A Gaussian Process (GP) is
a powerful statistical learning machine [42], that is built from several convenient
properties of the multivariate normal (Gaussian) distribution. Gaussian Process
models are non-parametric probabilistic models. Gaussian Process models can be
naturally expressed in the Bayesian inference framework by using kernel functions
or other covariance functions. Just like with Support Vector Machines, it turns out
that Gaussian Processes can be conveniently expressed using the form of Equation
(3.1). Specifically, for Gaussian Process we have:

f̂gpr(x) = φ

(
n∑

j=1
ŵjK(xj ,x) + ŵ0

)
.

For regression under the Gaussian noise model with homoscedastic variance σ2,
φ(·) = id(·), and the weights are given by

ŵj = [(K + σ2I)−1Y ]j ,

where Y = (y1, y2, . . . , yn)⊤ is the n-dimensional vector of all the response values.
It is important to note that the actual derivation of wj for Gaussian process
regression is far more complex than it appears here [15,42].
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4. Conceptual, methodological and theoretical comparisons

As stated several times up to this point, the motivating theme for the paper is the
exploration of similarities and dissimilarities between deep neural networks and
kernel learning machines, with the ultimate finality of finding out if deep neural
networks just might be the holy grail of statistical machine learning and artificial
intelligence. It is important to mention that, along with neural networks, other
paradigms have continued to arise, many of which have consistently challenged the
claims of superiority attributed to neural networks. Thanks to [41], radial basis
function networks are formulated as neural networks with one single hidden layer
and later shown to be kernel learning machines, with kernels of the specific type
known as radial basis function kernels. It is important to note that many other
kernel learning machines exist apart from radial basis function networks, devel-
oped from paradigms entirely foreign in principle to neural networks, and many of
those kernel learning machines have proven to be excellent learning machines built
on very solid and unshakable foundations. While the single hidden layer Neural
network enjoys the perch of the universal approximation theorem as its supporting
backbone and foundation, it is important to note that kernel learning machines
are supported by the equally powerful result known as the representer theorem
[9,20,47,48]. It is interesting and somewhat profoundly thought-provoking to note
that most of the earlier successes of neural networks all came thanks to the one
single hidden layer incarnation, with the so-called multiLayer perceptron (MLP),
a single hidden layer feedforward neural network leading the charge. If we denote
by H1HLNN, the function space of all one single hidden layer neural networks, then
∀f ∈ H1HLNN, we must have ∀x ∈ X ∈ Rd,

f(x) = φ
(

W (2)ψ
(

W (1)x + w(1)
0

)
+ w(2)

0

)
. (4.1)

In fact, it was around this single hidden layer (L = 1) neural network that some of
the most impressive theoretical foundations of neural networks were set and firmly
established. Along with all the successes in a wide variety of applications, various
versions and incarnations of the so-called universal approximation theorem sprang
up, all establishing single hidden layer (1HLNN) neural networks as formidable
learning machines capable of learning any smooth function whether in classification
or in regression. [3] opened up to the statistics community the desirable functional
analysis properties of neural networks as a means of universal approximation of
functions. In fact, [2] even provides an earlier foray in connection with insights
into the power of neural networks, interestingly based on just a single hidden layer.
Arguably one of the earliest if not the absolute earliest account on the universal
approximation power of single hidden layer neural networks is provided by [10] and
[11]. [32] revisits the universal approximation theorem featuring once again the
Single hidden layer multilayer perceptron neural networks, further strengthening
the perception and acceptance of single hidden layer neural networks as formidable
learning machines. Interestingly, similarities have long been established between
single hidden layer neural networks and some kernel learning machines, which begs
the question as to whether it even makes sense to fuss about the superiority of one
of the learning paradigms over the other. This paper will explore as thoroughly
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as possible all the similarities and differences between deep neural networks and
kernel learning machines. In their heyday, kernel learning machines, spearheaded
by radial basis function networks, also made similar claims of being the holy grail
in statistical machine learning and artificial intelligence. Which of the two is better
then? Can that question even be answered definitively? In the continuum ranging
from rigid parametric models to nonparametric to the so-called semi-parametric
models, it might be interesting to revisit the late 1990s theorem that establishes
Gaussian processes as the limit of a neural network with an infinite number of
nodes in the single hidden layer. Since Gaussian process learning machines are
pure nonparametric models, this connection may shed some light. What is the
function space/class complexity of these good candidate models? For radial basis
function networks, the learning machine is of the form given in Equation (4.2)

f(x) = φ

(
M∑

m=1
wmψ(∥x − cm∥)

)
, (4.2)

where φ(v) = v for regression or φ(v) = sign(v) for binary classification with labels
{−1,+1}. Interestingly, and somewhat crucially, the basis function ψ(·) admits
a reformulation in terms of a suitably chosen kernel K(·, ·), namely

ψ(∥x − cm∥) = K(x, cm) = exp
(

− 1
2τ2 ∥x − cm∥2

2

)
. (4.3)

The corresponding radial basis function network is then expressed as

f(x) = ψ

 n∑
j=1

wjK(x,xj) + w0

 . (4.4)

Note that the summation in (4.4) has n terms and uses the xj ’s, whereas the one
in (4.2) uses M terms with cm learned from the data. The form, however, is the
same, which makes our point of similarity of two learning machines. Through
a formulation like (4.3), the radial basis function network which is cast in the
context of neural networks finds itself being a bona fide member of the family of
kernel learning machines. Note also that Equation (4.1) is similar to Equation
(4.2). Interestingly, the similarities do not stop here. In fact, many of the early
theoretical results on the universality of neural networks could interchangeably be
expressed through radial basis function networks or through the kernel learning
machines equivalent, or counterparts.

Theorem 4.1. [11] Let f : X −→ Y be a function of interest to be estimated.
Assume that for all x ∈ X , E[f(x)] < ∞, and further assume that we have
a function ψ : R −→ R that is continuous with

lim
x→+∞

ψ(x) → 1 and lim
x→−∞

ψ(x) → 0.

Then, for any ε > 0, there exists n = n(ε) such that

inf
{(ai,bi,wi)}

E
{∣∣∣f(x) − 1

n

n∑
i=1

aiψ(⟨wi,x⟩ + bi)
∣∣∣} ≤ ε.



INTERFACE OF DNN AND KLM 87

Several other researchers like [26] and [25] have contributed theoretical results
of the same type around the approximation capabilities of multilayer feedforward
networks, typically featuring the single hidden layer architecture. At this point,
it might appear (and rightly so) more interesting to compare single hidden layer
neural networks to kernel learning machines, thanks in part to intrinsic similarities
but also because both paradigms are supported by strong theoretical foundations.
Such comparisons will be carried out computationally later. Two natural questions
arise in the presence of such an emphatic result as the universal approximation
power of single hidden layer neural networks, namely:

(a) How can anyone justify the need/importance to study or develop any other
learning paradigm if one exists that is a kind of panacea?

(b) Even within the neural networks paradigm, why should anyone use more than
one hidden layer when one hidden layer has all the approximation power?

Owing to the rise to prominence of deep neural networks, i.e., neural networks with
more than one hidden layer, it is important to extend our comparison to deep neu-
ral networks. Hence our overarching question, namely: Are Deep Neural Networks
(DNN) really predictively better than kernel learning machines (KLM) across the
board? This thought-provoking question, inspired by the surge in interest around
Deep Neural Networks, has led many researchers to seriously investigate the pre-
dictive performances of deep neural networks relative to other learning paradigms.
Specifically, in recent months, a number of authors have contributed several ac-
counts (most of them of a computational nature) of the predictive comparisons
between deep neural networks and kernel learning machines. [39] provides the
seminal account through which Gaussian processes are linked to single hidden
layer neural networks with an infinite number of nodes in the hidden layer. He
specifically established that when the number of nodes in the single hidden layer
of a neural network is allowed to grow to infinity, then one can use a Gaussian
process prior over such an infinite network and derive Gaussian process learning
machine as a regularized Neural Network. Considering the fact that Gaussian pro-
cess learning machines are kernel learning machines, this result is quite arguably
the first and most foundational foray into the now prevalent and widespread effort
aimed at comprehending deep neural networks via Gaussian processes. Amongst
others [5] and [24] are noteworthy. [5] declares that to understand deep learning
we need to understand kernel learning. Taking a computational approach, [24]
provide a comparison that is very similar in structure and in spirit to ours. Their
very title Deep neural networks and kernel regression achieve comparable accura-
cies for functional connectivity prediction of behavior and demographics presents
the very same conclusion we end up arriving at, namely that the two learning
paradigms are very similar in terms of predictive performances. More recent pa-
pers like [35] centered around Wide Neural Networks and [12] discussing Gaussian
process behavior in Wide deep neural networks, can be rightly viewed as exten-
sions of [39] this time adapted to Deep Neural Network architectures. Authors
like [28] are actively continuing the burgeoning work around the so-called neural
tangent kernel (NTK) used as one of the most promising ways of establishing the
link between deep neural networks and kernel learning machines, with the hope of
establishing with DNN the kind of firm similarity and analogy enjoyed by single
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hidden layer neural networks. Very early on, [6] proposed Kernel Methods for Deep
Learning, establishing somehow a strong connection between the two paradigms.
Both [27] and [28] introduce the neural tangent kernel, which provides one of the
strongest similarity between deep neural networks and kernel learning machines.
This work is truly revolutionary and transformative as it established the strongest
connection yet between the two paradigms. [35] proposes the exploration of Wide
Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent,
following [34], who formulated Deep Neural Networks as Gaussian Processes. Even
more recently, [52] emphasizes that Understanding Deep Learning (Still) Requires
Rethinking Generalization. From a theoretical and methodological perspective, it
appears that deep neural networks need kernel learning machines more than the
other way around, since we see from many authors that the formulation of DNN
via kernels is the pathway towards understanding DNN. In that sense, one may
declare the upper hand to kernel learning machines, although the equivalence of
formulation makes it hard to give the upper hand to any of the two paradigms.
Maybe the key lies with the kernel itself, in the sense that while the neural tangent
kernel might be a suitable device/mechanism for formulating a DNN as a kernel
learning machines, it might not be straightforward to compute it. Therefore, one
could see a methodological advantage in simply adopting traditional shallow ker-
nels rather than using the neural tangent kernel. Of course, since choosing the
suitable kernel is akin to model selection, which in turn has to do with the typ-
ically unknown geometry of the pattern underlying the data, one could conceive
of situations where the neural tangent kernel is the optimal choice, albeit with
the challenges of its computation. Finally, it is crucial to mention that classi-
cal kernel learning machines commonly used typically require the estimation of
at most n + 1 weights, whereas the number of weights needed for deep neural
networks can quickly grow to extremely large numbers. Each of the weight ma-
trices W (ℓ) is itself already a large dℓ × (dℓ−1 + 1) matrix. If dim(X ) = q, and
dim(Y ) = r, and dim(Zℓ) = dℓ, then, for a DNN with L hidden layers, θ will
have p = q+ r+

∑L
ℓ=1 dℓ × (dℓ + 1) entries, at least a priori. This makes a generic

DNN far more complex than a classical kernel learning machine. We will see in
Section 5 that this complexity often hurts DNN when there is not enough data to
learn all the weights consistently.

5. Computational explorations and demonstrations

As stated earlier, the chief goal of this paper is to perform computational com-
parisons on the predictive performances of both deep neural networks and kernel
learning machines. A rather huge challenge in this regard comes from the fact
that, due to the complex structure and the typically large number of parameters
inherent in deep neural networks, tuning the parameters is very time-consuming
and requires plenty of computational power, sometimes preventing the compari-
son altogether. As we mentioned earlier, we use both simulated and real-world
datasets in this paper. We typically randomly split the data into 70% for training
with the remaining 30% for testing the predictive performance. For each data
set, we run the random split 50 times, and then compute the predictive measures
of interest based on the 50 replications. To make sure it is objective to all the
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machines, we normalize the data before we run the methods. We compare the test
errors among five machines: Gaussian process with radial basis function kernel,
support vector machine with the linear kernel; support vector machine with the
polynomial kernel; support vector machine with radial basis function kernel, and
deep neural networks. In the rest of this section, we will show the details of the
data sets, experiments, and results. As we indicated right from Section 1, all the
learning machines considered are tuned and selected via cross validation. Cross
validation is a well-known and widely used method for tuning the hyperparameters
in statistical learning and data mining. It divides the data into V chunks, and
each chunk has almost equal portions, Dn =

⋃V
v=1 Dv, holding out the portion

and fitting the model from the rest of the data. We then use the fitted model to
predict the holdout samples and the average measure of predictive performance
over the V different fits to get the cross validation score, which is given by

CV (f̂) = 1
V

V∑
v=1

ξ̂v,

where

ξv = 1
|Dv|

n∑
i=1

1(zi ∈ Dv)L(yi, f̂
(−Dv)(xi))

Algorithm 2: V-fold cross validation
Input: Training data Dn = {zi = (x⊤

i ,yi), i = 1, 2, . . . , n},where
x⊤

i ∈ X ,yi ∈ Y , the function of interest is denoted by f ,
V : the number of fold, n: sample size.

Output: Cross Validation score CV (f̂)
for v=1 to V do

Extract the validation set
Dv = zi ∈ Dn : i ∈ [1 + (v − 1) ×m, v ×m]
Extract the training set Dc

v := Dn/Dv

Build the estimator f̂ (−Dv)(·) using Dc
v

Compute predictions f̂ (−Dv)(xi) for z ∈ Dv

Compute the validation error for the vth chunk

ξv = 1
|Dv|

n∑
i=1

1(zi ∈ Dv)L(yi, f̂
(−Dv)(xi))

Compute the output CV score

CV (f̂) = 1
V

V∑
v=1

ξ̂v

Cross validation is one of the main techniques we used in this research to tune
the parameters for the machines. For instance, in Figure 1, it shows tuning the
parameters for the support vector machine with Gaussian kernel, we could directly
visualize the best parameter in the plot, which is the lowest point.
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Figure 1. 5-fold cross validation to choose parameter for SVM with gaussian
kernel

Grid Search is a naive but straightforward approach to trying every possible
configuration. Since deep neural networks have many parameters (for example:
learning rate, dropout rate, batch size, etc.), the challenge of this approach is “the
curse of dimensionality”. This means that the more dimensions we add, the more
the search will explode in time complexity and computing power. For example,
we want to create four hidden layers Neural Networks model, and for each layer,
we add a dropout rate, also add a batch size to tune, and each parameter we
choose from 2 potential good candidates, then we will need to run 29 = 512 times.
Because of this limitation the dimensions used in the experiments are less than or
equal to 4, and the number of neurons in each layer goes from 16 to 256 in this
research. The R package “tfruns” is a suite of tools for tracking, visualizing, and
managing TensorFlow training runs. Figure 4a shows the tuning error; we want
two losses as close as it could be. Figure 2b shows the saved hyperparameters.
Using this table, we could find the best combination of the hyperparameters.

5.1. Simulation study

5.1.1. Regression example. For our first example, we consider 25-dimensional
multiple linear regression model with Gaussian noise. Specifically, Y ∈ R25 is
given by

Y = x⊤β⋆ + ε

Let β⋆ = (β1, β2, . . . , βp)⊤. Let us consider an example where β⋆ ∈ Rp, with
p = 25, β⋆

j = 0 for j /∈ {3, 5, 7, 11, 13, 17, 19}, except for β⋆
3 = 0.3, β⋆

5 = 0.5,
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(a) DNN (b) hyperparameters Table

Figure 2. Tuning hyperparameters for the Deep Neural Networks

β⋆
7 = −0.7, β⋆

11 = 0.11, β⋆
13 = 0.13, β⋆

17 = 0.17, β⋆
19 = 0.19. By changing the

number of data points (table 1), we get six sets of data. We run five machines,
then compare the test errors: (a) average test errors; (b) median test errors. Figure
3 shows the median and mean of 50 runs of the Mean Squared Error (MSE) on the
test data; based on the plots, we could see all the methods improve tremendously
when sample size n changes from 25 to 50, SVM with linear kernel, Gaussian kernel
and polynomial kernel slightly improve after n = 500 compared to DNN and GP.
All the SVM with kernel outperformed the DNN, GP is catching up with DNN at
250 data points, and starts to get better than DNN after that.

Table 1. Simulation data for regression Example

‘

SN partition n p κ = n/p

1 regression-25 25 25 1/1
2 regression-125 125 25 5/1
3 regression-250 250 25 10/1
4 regression-500 500 25 20/1
5 regression-750 750 25 30/1
6 regression-1250 1250 25 50/1

5.1.2. Classification example. In the classification simulation study, we gen-
erate 100 variables. All variables are generated from a multivariate Gaussian dis-
tribution, and the response variable Y is generated from a Bernoulli distribution
with the probability of success given by the function:

(Y |x) ∼ Bernoulli(π(x)) where π(x) = Pr(Y = 1|x) = 1
1 + e−x⊤β

.

Changing the number of data points from 25 to 500, which will give us differ-
ent values of κ = 1

4 ,
1
2 ,

1
1 ,

2
1 ,

5
1 . κ is an essential parameter in this paper, and it
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(a) Mean MSE plot (b) Median MSE plot

Figure 3. These two plots are the simulation regression results for 5 ma-
chines. The left image shows the mean MSE in the 50 runs. The right image
shows the median MSE in the 50 runs.

shows the models’ sensitiveness of the sample size. Table 2 shows the details of
the data used in the simulation classification study. We compare the test error:
Accuracy(ACC). We compare the median and mean of 50 runs of the accuracy
on the test data. Figure 4 shows the results. Based on the plots, we could see
most of the methods behaved much better when we increase the sample size from
25 to 50. SVM with linear kernel and Gaussian kernel could even reach 100 %
accuracy nearly all the time. DNN is not a very competitive machine at first, but
it starts to catch up when we increase the sample size to 100. SVM with linear
kernel works very well on this data compared to the other machines. GP is not
very competitive for this data set but eventually caught up when we increased the
data to 500.

Table 2. Simulation data for classification example

‘

SN partition n p κ = n/p

1 classification-25 25 100 1/4
2 classification-50 50 100 1/2
3 classification-100 100 100 1/1
4 classification-200 200 100 2/1
5 classification-500 500 100 5/1

In the simulation study, both the regression results and the classification results
show that kernel machines have a better output than Deep Neural Networks most
of the time. Compared to the kernel models, DNN’s behavior depends more on
the richness of the sample. In the next section, we present more results based on
the real-world data.
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(a) Mean ACC plot (b) Median ACC plot

Figure 4. These two plots are the simulation classification results for 5 ma-
chines. The left image shows the mean ACC in the 50 runs. The right image
shows the median ACC in the 50 runs.

5.2. Computational explorations for real life data

For the real-world data, we used 10 regression datasets, and 16 classification data
sets that included binary classification and multi-classification data. We thank
[40] and MNIST (public data) for the contribution of the data sets. We are trying
to cover as many areas as possible, for instance: medical, traffic, economic, etc.
Tables 3 and 4 briefly describe the data sets, the sample size, the number of
response variables and κ = n

p , which represents the informational richness. For
the classification data there are three comparison groups: nine data sets for the
binary classification, three data sets for the multi-classification, and four data sets
for the parameter κ’s influence.

Table 3. Regression Datasets table

SN Dataset n p κ = n/p

1 Airfoil 1503 6 250.5
2 Auto mpg 392 8 49
3 computer hardware 209 7 29.86
4 Concrete strength 1030 9 114.44
5 Diabetes 442 11 40.18
6 Ducan MBA 203 7 29
7 GPA 141 5 28.2
8 hprice 506 6 84.33
9 Istanbul stock 536 8 67

10 Mortality 992 4 233.75
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Table 4. Classification Datasets table

SN Dataset n p Number of classes κ = n/p

1 Asthmatic 405 11 2 36.82
2 Breast cancer 569 10 2 56.90
3 Congressional voting 435 17 2 25.59
4 Cryotherapy 90 7 2 12.86
5 Social network 400 4 2 100
6 Gender voice 3168 21 2 150.86
7 Diabetic 1151 20 2 57.55
8 Sonar 208 61 2 3.41
9 Indian Liver Patient 538 11 2 53

10 Balance scale 625 5 3 125
11 Cars 1728 7 4 246.86
12 Seeds 210 8 3 26.25
13 MNIST-112 112 784 10 1/7
14 MNIST-300 300 784 10 0.38(appro 3/7)
15 MNIST-784 784 784 10 1
16 MNIST-1586 1586 784 10 2

5.3. Regression results

For the regression study, there are ten data sets to be used to compare the five
machines. The distribution of test errors of all the machines over 50 replications
is shown in Figure 5. Among the ten boxplots, we could see the SVM with kernels
are mostly better than DNN and have a smaller range compared to DNN. DNN
only outperformed GP once (the 3rd boxplot). DNN did slightly better than SVM
with the polynomial kernel. In the regression comparison, we would evaluate the
minimum, median, maximum and mean of the test error which is shown in Tables
5, 6, 8 and 7. Among all the tables, SVM with Gaussian kernel wins seven times in
the minimum table, six times in the median table, seven times in the mean table,
and seven times in the maximum table, which makes SVM with Gaussian kernel
the winner among the five learning machines. GP wins two times in the median
table and maximum table, and one time in the mean table. DNN only wins two
times in the minimum table, and there is a tie with the SVM with linear kernel.

5.4. Classification results

5.4.1. Binary classification results. In this section, we test five machines on
nine binary classification datasets, we compare the minimum, median, maximum
and mean of the test error which shows in Tables 12, 10, 11 and 9. We also
generate distributions of the test error over 50 replications, which is shown in
Figure 6. The boxplots show that DNN is comparable with other machines. In
the binary classification test, DNN performs better than in the regression test and
has a relatively smaller range of test error. In the maximum comparison table,
SVM-RBF wins four times; SVM-poly and SVM-linear each win three times; GP
wins two times, and DNN wins one time, but it ties with GP in this time. In
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Table 5. Regression minimum MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Airfoil 0.335 0.378 0.370 0.253 0.346
Auto mpg 2.33 2.50 2.75 2.65 2.38
computer hardware 28.41 31.55 31.58 31.71 33.89
Concrete 5.65 6.09 9.56 6.72 6.45
Diabetes 49.66 50.33 49.58 50.28 50.59
Ducan MBA 0.168 0.177 0.166 0.166 0.174
GPA 0.265 0.270 0.272 0.350 0.271
hprice 2839.00 3075.46 4311.29 3613.33 3709.67
Istanbul stock 0.0124 0.0124 0.0124 0.0137 0.0143
Mortality 0.00008 0.00008 0.00045 0.00225 0.00012

Table 6. Regression mediam MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Airfoil 0.49 0.53 0.53 0.54 0.47
Auto mpg 2.84 3.01 3.43 3.47 2.97
computer hardware 55.37 73.00 68.19 64.22 124.89
Concrete 6.39 7.89 10.82 8.87 7.23
Diabetes 55.42 56.48 56.32 58.87 56.30
Ducan MBA 0.21 0.21 0.21 0.36 0.22
GPA 0.36 0.35 0.35 0.49 0.37
hprice 5077.29 5058.32 5631.73 5291.71 4966.83
Istanbul stock 0.01 0.01 0.01 0.02 0.02
Mortality 10.12 9.70 9.16 12.18 9.66

Table 7. Regression mean MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Airfoil 0.49 0.54 0.55 0.53 0.47
Auto mpg 2.89 3.03 3.44 3.80 2.95
computer hardware 58.83 79.93 71.27 68.96 127.09
Concrete 6.42 7.61 10.81 9.25 7.25
Diabetes 55.18 55.92 55.98 59.19 56.32
Ducan MBA 0.21 0.22 0.21 0.37 0.22
GPA 0.36 0.35 0.35 0.53 0.36
hprice 4928.90 4893.10 5577.50 5155.59 4989.48
Istanbul stock 0.01 0.01 0.01 0.02 0.02
Mortality 9.50 8.76 8.30 12.03 8.89

the medium comparison table, SVM-poly and GP each win three times SVM-
RBF wins two times, SVM-linear wins one time, DNN wins 0 times. SVM-poly
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Table 8. Regression maximum MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Airfoil 0.67 0.75 0.75 0.74 0.66
Auto mpg 3.69 3.88 4.22 6.50 4.06
computer hardware 112.15 156.68 130.46 119.84 222.77
Concrete 7.72 8.70 12.73 16.26 8.21
Diabetes 61.15 62.05 62.05 80.75 61.89
Ducan MBA 0.29 0.29 0.25 0.77 0.26
GPA 0.44 0.46 0.45 0.97 0.43
hprice 5907.38 5918.57 6703.37 6278.60 5982.95
Istanbul stock 0.02 0.02 0.02 0.03 0.02
Mortality 18.95 18.64 12.86 39.97 13.33

wins four times in the mean table, DNN once but ties with SVM-poly and SVM-
RBF in this one time, GP wins three times in the mean table. For the minimum
table, DNN only wins once, SVM-poly wins five times. So based on all the binary
classification results, SVM-poly is the winner among the five machines; DNN does
not outperform the other machines. Even though the Kernel machines still seem
to give a better predictive performance based on the tables and the boxplot, DNN
is still comparable with other machines in these cases.

Table 9. Binary Classification maximum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Asthmatic 0.913 0.898 0.913 0.891 0.896
breast cancer 0.988 0.981 0.981 0.987 0.982
congressional voting 0.992 0.992 0.992 0.986 0.976
cryotherapy 0.935 0.969 0.960 1.000 1.000
Social network 0.954 0.969 0.908 0.962 0.956
gender voice 0.984 0.992 0.981 0.981 0.984
Diabetic 0.785 0.787 0.788 0.771 0.764
Sonar 0.948 0.944 0.865 0.865 0.900
Indian Liver Patient 0.753 0.781 0.781 0.750 0.803

5.4.2. Multi classification results. In the multi-class cases, we use seven da-
tasets, divided into two sections. The first section contains three datasets, and
the second section contains four datasets that explicitly test the κ effect of the
prediction performance.

In the first section, we use three datasets to compare the minimum, median,
maximum, and mean of the test error. Tables 13, 14, 15 and 16 show the result.
SVM-RBF wins two times out of three in the maximum and minimum comparison
table and three times in the medium and mean comparison table, making it the
winner in the multi-classification test. DNN and GP do not win even one time
among the four comparison tables. However, based on the value of the 4 ACC
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(a) Airfoil (b) auto mpg (c) computer hardware

(d) Concrete (e) Diabetes (f) Ducan MBAh

(g) GPA (h) Hprice (i) Istanbul stock

(j) Mortality

Figure 5. Comparison boxplots of MSE for 10 regression data sets, where
x-axis is the name of the machines, y-axis is MSE.

tables, most machines have an above 95% ACC value, which is an excellent result
for the multi-classification problem, and SVM-RBF has a couple 100% accuracy,
which makes this machine excellent for these data sets.

5.4.3. Predictive performances on MNIST and a function of κ. Although
the current study suggests that the kernel machines and DNN models perform
very similarly, the predictive performance of DNN seems more dependent on the
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Table 10. Binary Classification median accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Asthmatic 0.837 0.838 0.845 0.823 0.830
breast cancer 0.961 0.962 0.958 0.957 0.958
congressional voting 0.958 0.955 0.957 0.953 0.947
cryotherapy 0.849 0.830 0.862 0.880 0.895
Social network 0.890 0.899 0.824 0.891 0.902
gender voice 0.976 0.981 0.975 0.970 0.972
Diabetic 0.742 0.734 0.741 0.707 0.692
Sonar 0.817 0.857 0.764 0.771 0.789
Indian Liver Patien 0.698 0.705 0.703 0.697 0.708

Table 11. Binary Classification mean accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Asthmatic 0.843 0.840 0.846 0.822 0.830
breast cancer 0.959 0.959 0.958 0.957 0.956
congressional voting 0.956 0.956 0.955 0.956 0.945
cryotherapy 0.844 0.832 0.855 0.876 0.893
Social network 0.894 0.900 0.834 0.898 0.901
gender voice 0.976 0.981 0.974 0.971 0.972
Diabetic 0.745 0.734 0.744 0.708 0.695
Sonar 0.816 0.854 0.760 0.760 0.788
Indian Liver Patien 0.697 0.714 0.712 0.697 0.710

Table 12. Binary Classification minimum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
Asthmatic 0.765 0.755 0.775 0.716 0.745
breast cancer 0.912 0.916 0.906 0.912 0.894
congressional voting 0.917 0.915 0.919 0.907 0.911
cryotherapy 0.724 0.571 0.733 0.720 0.800
Social network 0.815 0.823 0.773 0.846 0.831
gender voice 0.962 0.974 0.962 0.959 0.964
Diabetic 0.682 0.692 0.675 0.618 0.637
Sonar 0.690 0.761 0.636 0.549 0.662
Indian Liver Patient 0.640 0.658 0.658 0.572 0.629

Table 13. Multi Classification maximum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
balance scale 1.00 0.99 0.97 0.98 0.94
cars 1.00 0.99 0.88 0.98 0.91
seeds 0.99 0.99 1.00 0.97 0.99
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(a) Asthmatic (b) breast cancer (c) Congressional voting

(d) cryotherapy (e) Social network (f) Gender voice

(g) Diabetic (h) Sonar (i) Indian Liver Patient

Figure 6. Comparison boxplot of accuracy(ACC) for 9 binary classification
data sets, where x-axis is the name of the machines, y-axis is ACC.

Table 14. Multi Classification median accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
balance scale 1.00 0.96 0.92 0.96 0.91
cars 0.98 0.98 0.85 0.96 0.89
seeds 0.95 0.93 0.95 0.93 0.93

Table 15. Multi Classification mean accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
balance scale 0.99 0.96 0.92 0.96 0.91
cars 0.98 0.98 0.85 0.96 0.89
seeds 0.94 0.92 0.94 0.92 0.92
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Table 16. Multi Classification minimum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP
balance scale 0.95 0.91 0.88 0.90 0.85
cars 0.96 0.97 0.82 0.94 0.85
seeds 0.80 0.84 0.82 0.83 0.82

Figure 7. Multi Classification accuracy comparison boxplot, where x-axis
is the name of the machines, y-axis is ACC

richness of the data. In this section, we carry out an empirical study of the richness
of the data (κ = n/p) affecting the performance.

The MNIST database mentioned earlier is a large database of handwritten dig-
its from USPS. It has been commonly used for image recognition processing, and
training and testing in the field of machine learning. Figure 8 shows 16 sample
digits of MNIST data. We randomly take samples from the MNIST classification
data set; we use 112, 300, 784, and 1568 samples as training data (Table 17), and
100 samples as test data. We run each machine 50 times for each sample data and
then compare the performance on the test data.

Table 17. MNIST datasets

SN partition n p Number of classes κ = n/p

1 MNIST-112 112 784 10 1/7
2 MNIST-300 300 784 10 3/7
3 MNIST-784 784 784 10 1
4 MNIST-1586 1586 784 10 2

We compare the minimum, mean, maximum, and medium of the accuracy re-
sults. In Figure 10, we could tell SVM-RBF, SVM-poly and SVM-linear are excel-
lent machines for this task when using four different sizes of data. Next, let us look
at the DNN’s performance. From box plot one to box plot four we notice that, as
the sample sizes get larger, the range of DNN’s accuracy gets smaller and catches
up with SVM kernel machines. GP is falling behind all the time. In Figure 9,
the performance of all the algorithms increases with more data. When using 112
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Figure 8. 16 sample digits from MNIST

data points where n/p is 1/7, the medium and maximum all start relatively low.
When we increase n/p to approximately 3/7, all the machines have their accuracy
increase tremendously, but the SVM kernel machines are still a lot better than
DNN. From 3/7 to 1, the accuracy improves for all the machines by a lot, but
the DNN model increases more than the other models, and it becomes more com-
patible with the SVM kernel machines. When increasing n/p to 2, DNN’s output
is almost as good as SVM-RBF, but the tuning time of the DNN model is a lot
longer than that of the SVM-RBF machine. So, based on these results, we can
say that DNN is a greedy machine. It needs a rich data set to do the job.

6. Conclusion and discussion

The whole purpose of this paper was to explore the similarities and differences
between kernel learning machines and Deep Neural Networks.

Section 4 provided a discussion of the similarities and differences between kernel
learning machines and Neural Networks from a conceptual, methodological and
theoretical perspectives. It was found that there are some similarities between
the two learning paradigms, some of those similarities making the two paradigms
almost identical at times. For instance, Gaussian processes turned out to be equiv-
alent to single hidden layer neural networks with an infinite number of nodes in
the hidden layer. Radial Basis Function Networks are formulated as Neural Net-
works with one single hidden layer and later shown to be kernel learning machines,
with kernels of the specific type known as radial basis function kernels. In fact, it
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(a) MNIST maximum accuracy plot (b) MNIST median accuracy plot

(c) MNIST mean accuracy plot (d) MNIST minimum accuracy plot

Figure 9. MNIST accuracy(ACC) comparison plots, where x-axis is the
name of the machines, y-axis is ACC

turns out that, for many versions of the so-called universal approximation theo-
rem, single hidden layer neural networks are indistinguishable from kernel learning
machines.

We later created objective experimental comparisons between Deep Neural Net-
works and Kernel machines in Section 5. We used many simulated and real-world
datasets to compare kernel machines and Deep Neural Networks. Based on our
experimental results, Kernel machines offer very competitive predictive perfor-
mances and typically outperform Deep Neural Networks on almost all the data
sets explored. Kernel machines also save resources compared to DNN according
to the number of parameters and the tuning time. Deep Neural Networks turned
out to be inordinately demanding in tuning time because of there complex internal
structures, requiring vast amounts of time and computer resources.
κ = n/p is one of the essential characteristics in this research, representing the

richness of the data. Just as we anticipated, our results clearly show that the
performance of DNN strongly depends on the richness of the data. In conclusion,
DNN does not appear to be ideal for use if the dataset is small and limited. This is
clearly more evidence for neural networks with more than one hidden layer. In the
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(a) MNIST 112 (b) MNIST 300

(c) MNIST 784 (d) MNIST 1568

Figure 10. MNIST accuracy comparison boxplot, where x-axis is the name
of the machines, y-axis is ACC

event of data poverty, i.e., when κ < 1, kernel methods appear to outperform DNN
substantially. This alone shows that the claim that DNN should be a panacea used
on every conceivable task, is at best an unsubstantiated claim.

Numerous articles based on the “No Free Lunch Theorem” have been published
that compare the performance of various machine learning algorithms [40, 49,50].
The central point of the “No Free Lunch Theorem” is that the class of models
for which a given learning technique is the adequate representation is limited. In
other words, no one technique will work well for all problems. Even though DNN
has been a success in a number of very complex real life problems like self driving
cars and complex image classification tasks, they also seem not to work well on
very many tasks of importance to practitioners from all walks of life. Besides,
our computational explorations did show that DNN do typically require relatively
powerful computer systems, for some users, which may not be an ideal choice;
due to the complex structure of DNN, which is also easier to lead to overfitting
problems. DNN also required large amounts of data in order to yield adequate
predictive performances comparable to those of kernel learning machines.

Our investigation found that kernel methods may be better suited for typical
practical applications. A natural sequel to our investigation would be using more
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powerful computers to investigate how well DNN would perform with vast amounts
of data.
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