Math. Appl. **11** (2022), 1–11 DOI: 10.13164/ma.2022.01

ON THE CATEGORY OF ORDERED PRE-TOPOLOGICAL SPACES

MOULDI ABBASSI, SAMI LAZAAR AND ABDELWAHEB MHEMDI

Abstract. A pre-topological space equipped with an order is called an ordered pretopological space. These spaces form the objects of a category which will be denoted by **OVPT**. The arrows of this category are certain increasing maps called *V*-continuous. Essentially, we will prove that the subcategory of ordered pretopological spaces of type T_0 , **OVPT**₀, is reflective in **OVPT**. We introduce and study some new separation axioms and characterize the class of morphisms orthogonal to the objects of **OVPT**₀.

1. INTRODUCTION

Categorical topologists are interested in developing different reflections in the category **TOP** of topological spaces with continuous maps as arrows. For more information on reflective subcategories we cite [4, 5, 8, 19]. Especially, concerning the category TOP, interesting results can be found in [6, 9, 10, 20]. Herrlich and Strecker described in their paper [13] some methods of constructing reflections related to separation axioms like T_0 -, T_1 - and T_2 -reflection in **TOP**.

The study of T_0 -reflection was generalized to other categories. As examples we can cite the category of the ordered topological space **ORDTOP** in [14, 15] (ordered topological spaces are presented by Nachbin in [18]), the category of the generalized topology **GenTOP** in [17], and the category of the pretopological spaces **PreTOP** in [1].

Here, we will consider this concept in the category of the ordered pre-topological space of type V denoted **OVPT**.

In Section 2, we recall some notions and definitions used throughout this paper and we will introduce the new category **OVPT** of ordered pre-topological spaces of type V as objects and we will define its arrows. In Section 3, the construction of the T_0 -reflection will be given. Finally, Section 4 will be devoted to the characterization of arrows in **OVPT** orthogonal to the full subcategory **OVPT**₀ where objects are of type T_0 .

MSC (2020): primary 54F05; secondary 54C99, 54B15.

Keywords: ordered topological space, quasi-homeomorphism, T_0 -ordered topological space.

2. Preliminary

In this section, we will introduce definitions and notations which will be used throughout this paper. We start by the definition of a pre-topological space given using the Čech closure operator [7].

Definition 2.1. Let X be a nonempty set and a be a map from the power set of X, $\mathcal{P}(X)$ to itself. a is called a Čech closure operator on X if it satisfies:

(1) $a(\emptyset) = \emptyset;$

(2) $\forall A \in \mathcal{P}(X), A \subseteq a(A);$

(3) $a(A \cup B) = a(A) \cup a(B)$ for all $A, B \in \mathcal{P}(X)$.

In this case, (X, a) is called a pre-topological space of type V or, for short, a pre-topological space.

When \leq is a partial order on X, then the triplet (X, a, \leq) is called an ordered pre-topological space.

In this paper, all pre-topological spaces are considered of type V.

Definition 2.2. Let (X, a) be an ordered pre-topological space and A a subset of X. Then,

- (1) A is said to be a quasi-closed set (q-closed set for short) if there exists a subset B of X such that A = a(B). The set of q-closed sets of X will be denoted by QC(X).
- (2) A is said to be a closed set if a(A) = A. The set of closed sets of X will be denoted by C(X).
- (3) A will be a quasi-open (q-open for short) set (resp. an open set) if $A^c \in QC(X)$ (resp. $A^c \in C(X)$). The set of q-open sets (resp. open sets) of X will be denoted by QO(X) (resp. O(X)).

Remark 2.3. We have the following implication:

closed (resp. open) \implies q-closed (resp. q-open)

Example 2.4. Let $X = \{0, 1, 2\}$ and $a : \mathcal{P}(X) \to \mathcal{P}(X)$ defined by $a(\emptyset) = \emptyset$, $a(\{0\}) = \{0\}$, $a(\{1\}) = \{0, 1\}$, $a(\{2\}) = \{1, 2\}$, $a(\{0, 1\}) = \{0, 1\}$, $a(\{0, 2\}) = a(\{1, 2\}) = a(X) = X$. (X, a) is an ordered pre-topological space and we have:

- (1) $C(X) = \{\emptyset, \{0\}, \{0, 1\}, X\};$
- (2) $QC(X) = \{\emptyset, \{0\}, \{0, 1\}, \{1, 2\}, X\};$
- (3) $O(X) = \{\emptyset, \{2\}, \{1, 2\}, X\};$
- (4) $QO(X) = \{\emptyset, \{0\}, \{2\}, \{1, 2\}, X\}.$

Notation 2.5. Let (X, a, \leq) be an ordered pre-topological space and A be a nonempty subset of X. The increasing (resp. decreasing) hull of A denoted by i(A) (resp. d(A)) is defined by:

$$i(A) = \{ y \in X : \exists x \in A \text{ with } x \le y \}.$$

 $(resp. d(A) = \{y \in X : \exists x \in A \text{ with } y \le x\}).$

If i(A) = A (resp. d(A) = A), then A is called an increasing (resp. decreasing) set (see [14]).

We also consider the following notations:

- We denote by CI(X) (resp. CD(X)) the collection of all increasing (resp. decreasing) closed sets of X.
- We denote by QCI(X) (resp. QCD(X)) the collection of all increasing (resp. decreasing) q-closed sets of X.
- We denote by OI(X) (resp. OD(X)) the collection of all increasing (resp. decreasing) open sets of X.
- We denote by QOI(X) (resp. QOD(X)) the collection of all increasing (resp. decreasing) q-open sets of X.
- We denote by CM(X) the set $CI(X) \cup CD(X)$.
- $VI(A) = \bigcap \{F | F \in CI(X) \& A \subseteq F\}.$
- $VD(A) = \bigcap \{F | F \in CD(X) \& A \subseteq F\}.$
- We denote by Co(A) the set $VI(A) \cap VD(A)$.

Example 2.6. Let $X = \mathbb{R} \cup \{-\infty, +\infty\}$ with the natural order and a the closure operator defined, for all $A \subseteq X$, by:

- $a(A) = A \cup \{+\infty\}$ if $-\infty \in A$;
- a(A) = A if $-\infty \notin A$ and A is finite;
- $a(A) = A \cup \{-\infty\}$ if $-\infty \notin A$ and A is infinite.

(X, a, <) is an ordered pre-topological space. We have

$$a(\{+\infty\}) = \{+\infty\}$$
 and $i(\{+\infty\}) = \{+\infty\}$, so $\{+\infty\} \in CI(X)$.

We have

$$d(\{-\infty\}) = \{-\infty\} \quad \text{but} \quad a(\{-\infty\}) = \{-\infty, +\infty\}, \quad \text{so} \quad \{+\infty\} \notin CD(X).$$

We have

$$a(\{0\}) = \{0\}$$
 but $i(\{0\}) = \mathbb{R}_+ \cup \{+\infty\}$, so $\{0\} \notin CI(X)$.

Lemma 2.7. Let (X, a, \leq) be an ordered pre-topological space. Then, we have the following equivalence:

$$Co(x) = Co(y) \iff VI(x) = VI(y) \& VD(x) = VD(y).$$

Proof. Suppose that Co(x) = Co(y). Without lost of generality it is sufficient to prove that $VI(x) \subseteq VI(y)$. Let $t \in VI(x)$ and F be an increasing closed set containing y. If $t \notin F$, then x must be outside F ($t \in VI(x)$), which contradicts the fact that $x \in Co(x) = Co(y) \subseteq F$. Then, we deduce that $I(x) \subseteq I(y)$.

The converse implication follows immediately.

Definition 2.8. Let (X, a, \leq) and (Y, b, \subseteq) be two ordered pre-topological spaces. An increasing map f from X to Y is said to be V-continuous if the inverse image of a closed increasing (resp. decreasing) set of Y is a closed increasing (resp. d_{Y}) is a closed increasing (resp. d_{Y}). decreasing) set of X.

Example 2.9. In \mathbb{R} , we define *a* and *b*, for all $F \subseteq \mathbb{R}$, by:

- If the infimum and the supremum of F exist: $a(F) =] \alpha(F) 1, \alpha(F) + 1[$ and $b(F) =] - \alpha(F), \alpha(F) [\text{ where } \alpha(F) = \max\{|\inf(F)|, |\sup(F)|\}.$
- else, $a(F) = b(F) = \mathbb{R}$.

Then, (\mathbb{R}, a, \leq) and (\mathbb{R}, b, \leq) are two ordered pre-topological spaces. Consider the map f defined from (\mathbb{R}, a, \leq) to (\mathbb{R}, b, \leq) by f(x) = 2 if $0 \leq x$ and f(x) = 1 if $0 \leq x$.

It is clear that f is an increasing map. The unique monotone closed set of (\mathbb{R}, b, \leq) is \mathbb{R} , so f is V-continuous.

We can also remark that]-1.5, 1.5[is a closed set in (\mathbb{R}, b) but $f^{-1}(]-1.5, 1.5[) =] -\infty, 0[$, which is not closed in (\mathbb{R}, a) . This example proves that the V-continuity does not imply the continuity between pre-topological spaces without regarding the order.

According to the definition of separation axioms for topological spaces, we introduce the following equivalent definition:

Definition 2.10. Let (X, a, \leq) be an ordered pre-topological space. Then,

- (1) (X, a, \leq) is said to be T_0 (resp. QT_0) if, for all distinct two points of X, there exists a monotone open (resp. q-open) set containing one of the points which does not contain the other one.
- (2) (X, a, \leq) is said to be T_1 (resp. QT_1) if, for all $x \leq y$, there exists an increasing open (resp. q-open) set containing x which does not contain y and there exists a decreasing open (resp. q-open) set containing y which does not contain x.
- (3) (X, a, \leq) is said to be T_2 (resp. QT_2) if, for all $x \leq y$, there exists an increasing open (resp. q-open) set containing x disjoint from some decreasing open (resp. q-open) set containing y.

Remark 2.11. The following implications hold:

- (1) $T_i \Rightarrow QT_i \text{ for all } i \in \{0, 1, 2\}.$
- (2) $T_i \Rightarrow T_{i-1}$ for all $i \in \{1, 2\}$.
- (3) $QT_i \Rightarrow QT_{i-1}$ for all $i \in \{1, 2\}$.

In ordered pre-topological spaces, the complement of an increasing (resp. decreasing) closed set is a decreasing (resp. increasing) open set. Then, replacing open by closed, increasing by decreasing and decreasing by increasing in Definition 2.10 results in the same definitions.

Proposition 2.12. Let (X, a, \leq) be an ordered pre-topological space. Then, the following statements are equivalent:

- (a) (X, a, \leq) is T_0 ;
- (b) VI(x) = VI(y) and VD(x) = VD(y) implies x = y;
- (c) Co(x) = Co(y) implies x = y.

Proof. (a) \Rightarrow (b): Let $x \neq y \in X$. Then, there exists a monotone closed set F containing, for example, x which does not contain y. If F is increasing (resp. decreasing), then it contains CI(x) (resp. CD(x)) and then $CI(x) \neq CI(y)$ (resp. $CD(x) \neq CD(y)$).

(b) \Rightarrow (a): If $x \neq y \in X$, then, for example, $CI(x) \neq CI(y)$. So, CI(x) (or CI(y)) is an increasing closed set containing one of the points and not containing the other one.

(b) \Leftrightarrow (c): It is a direct consequence of Lemma 2.7.

Proposition 2.13. Let (X, a, \leq) be an ordered pre-topological space. Then, the following statements are equivalent:

- (a) (X, a, \leq) is T_1 ;
- (b) i(x) and d(x) are closed for all $x \in X$.

Proof. (a) \Rightarrow (b): Let $x \in X$. We have to prove that a(i(x)) = i(x). Suppose that there exists $y \in X$ such that $y \in a(i(x)) \setminus i(x)$. Since (X, a, \leq) is T_1 , there exists an increasing closed set F containing x that does not contain $y, x \in F$ implies $i(x) \subseteq F$ and then $a(i(x)) \subseteq a(F) = F$ so that $y \in F$, which is a contradiction. We can deduce that a(i(x)) = i(x).

(b) \Rightarrow (a): Let $x \leq y$. Then $d(y)^c$ is an increasing open set containing x that does not contain y and $i(x)^c$ is a decreasing open set containing y which does not contain x.

Example 2.14. Let $X = \{0, 1\}$ and a be the closure operator defined on X by:

•
$$a(\emptyset) = \emptyset;$$

• $a(\{0\}) = \{0\};$
• $a(\{1\}) = X;$

•
$$a(\{1\}) = X;$$

• a(X) = X.

 (X, a, \leq) is an ordered pre-topological space where \leq is the order induced from \mathbb{N} . So, we have:

(1)
$$CI(X) = \{X\};$$

(2) $CD(X) = \{\{0\}, X\}.$

Then, (X, a, \leq) is T_0 but not T_1 .

Ordered pre-topological spaces with increasing V-continuous functions form a category called **OVPT**. Its full subcategory of an ordered topological space of type T_0 will be denoted by **OVPT**₀.

3. Reflection construction

The main goal of this section, and the paper, is to construct the T_0 -reflection in OVPT.

By Maclane [16], to show that the full subcategory \mathbf{OVPT}_0 is reflective in **OVPT**, it will be sufficient to prove that, for each $(X, a, \leq) \in \mathbf{OVPT}$, there exists an object $(T_0(X), \tilde{a}, \leq^0) \in \mathbf{OVPT}_0$ and an arrow

$$g: (X, a, \leq) \to (T_0(X), \tilde{a}, \leq^0)$$

such that, for every $(Y, b, \subseteq) \in \mathbf{OVPT}_0$ and each increasing V-continuous map $f: (X, a, \leq) \to (Y, b, \subseteq)$, there exists an increasing V-continuous map

$$\tilde{f}: (T_0(X), \tilde{a}, \leq^0) \to (Y, b, \subseteq)$$

rendering commutative the following diagram:

Let (X, a, \leq) be an ordered pre-topological space. The relation defined on X by $x \sim y$ if and only if VI(x) = VI(y) and VD(x) = VD(y) is an equivalence relation. The quotient set of this equivalence relation is denoted by X/\sim and μ_X denotes the canonical surjection from X onto X/\sim .

Let \tilde{a} be the map defined on $\mathcal{P}(X/\sim)$ to itself by

$$\tilde{a}(A) = \mu_X(a(\mu_X^{-1}(A))).$$

Proposition 3.1. $(X/\sim, \tilde{a})$ is a pre-topological space of type V.

Proof. One can easily see that \tilde{a} satisfies the conditions in Definition 2.1.

In the ordered pre-topological space $(X/\sim, \tilde{a})$, we will take the finite step order \leq^0 , which is defined by: $\overline{z_0} \leq^0 \overline{z_n}$ if and only if:

$$\exists \overline{z_1}, \dots, \overline{z_{n-1}} \quad \text{and} \quad \exists z'_i, z^*_i \in \overline{z_i} \quad (i = 0, 1, \dots, n)$$

with $z'_i \leq z^*_{i+1} \quad \forall i = 0, 1, \dots, n-1.$ (3.1)

Proposition 3.2. (1) If $A \in CI(X)$, then $\mu_X(A) \in CI(X/\sim)$. (2) If $B \in CI(X/\sim)$, then $\mu_X^{-1}(B) \in CI(X)$.

Proof. We start by proving that $A \in CI(X)$ if and only if $\mu_X^{-1}(\mu_X(A)) = A$. The inclusion $A \subseteq \mu_X^{-1}(\mu_X(A))$ is straightforward. Conversely, let $y \in \mu_X^{-1}(\mu_X(A))$ and $x \in A$ such that $\mu_X(x) = \mu_X(y)$. Since A is increasing closed, $CI(x) \subseteq A$ and $y \in CI(y) = CI(x) \subseteq A$. This fact proves that $A \in CI(X)$ implies $\mu_X^{-1}(\mu_X(A)) = A$. The converse implication is easy to prove.

(1) Suppose that $A \in CI(X)$. The equality $\mu_X^{-1}(\mu_X(A)) = A$ implies

$$\tilde{a}(\mu_X(A)) = \mu_X(a(\mu_X^{-1}(\mu_X(A)))) = \mu_X(a(A)) = \mu_X(A).$$

Then, $\mu_X(A)$ is V-closed. The definition of the finite step order implies the increase of $\mu_X(A)$. Thus, $\mu_X(A) \in CI(X/\sim)$.

(2) Let $B \in CI(X/\sim)$. We have $\mu_X^{-1}(B) \subseteq a(\mu_X^{-1}(B))$. On the other hand,

$$a(\mu_X^{-1}(B)) \subseteq \mu_X^{-1}(\mu_X(a(\mu_X^{-1}(B)))) = \mu_X^{-1}(\tilde{a}(B)) = \mu_X^{-1}(B).$$

Thus, $a(\mu_X^{-1}(B)) = \mu_X^{-1}(B)$ and then $\mu_X^{-1}(B) \in C(X)$. Let $x \in \mu_X^{-1}(B)$ and $y \in X$ such that $x \leq y$. So, $\bar{x} \in B$ and $\bar{x} \leq^0 \bar{y}$, which proves that $\bar{y} \in B$ because B is increasing, $y \in \mu_X^{-1}(B)$ and, finally, $\mu_X^{-1}(B) \in CI(X)$.

Corollary 3.3. $\mu_X : (X, a) \to (X/\sim, \tilde{a})$ is an increasing V-continuous map. **Theorem 3.4.** $(X/\sim, \tilde{a}, \leq^0)$ is T_0 .

Proof. Let $\mu_X(x) \neq \mu_X(y) \in X/\sim$. There exists an increasing V-closed set A containing, for example, x which does not contain y. Thus, $\mu_X(A)$ is an increasing closed set of X/\sim containing $\mu_X(x)$ which does not contain $\mu_X(y)$. This proves that $(X/\sim, \tilde{a}, \leq^0)$ is T_0 .

Theorem 3.5. $OVPT_0$ is reflective in $OVPT_0$.

Proof. It suffices to prove that, for any ordered pre-topological space (X, a, \leq) , $(X/\sim, \tilde{a}, \leq^0)$ is the T_0 -reflection of (X, a, \leq) .

For this, using the characterization given by MacLane, we must prove that, for every (Y, b, \subseteq) which is T_0 and every increasing V-continuous map from (X, a, \leq) to (Y, b, \subseteq) , there exists a unique increasing V-continuous map \tilde{f} rendering the following diagram commutative:

Uniqueness: Clearly, if \tilde{f} exists, then it is unique and naturally defined by $\tilde{f}(\mu_X(x)) = f(x)$.

 \tilde{f} is well defined: Suppose $x, y \in X$ and $\mu_X(x) = \mu_X(y)$. If $f(x) \neq f(y)$ and since (Y, b, \subseteq) is T_0 , then there exists a monotone closed set A which contains for example f(x) which does not contain f(y). So, $f^{-1}(A)$ is a monotone closed set which contains x and contains y. This is a contradiction.

 \tilde{f} is V-continuous: Let F be an increasing closed set of (Y, b, \subseteq) . We have $\mu_X^{-1}(\tilde{f}^{-1}(F)) = f^{-1}(F) \in CI(X)$, then, by Proposition 3.2, we have

$$\mu_X \left(\mu_X^{-1}(\tilde{f}^{-1}(F)) \right) = \tilde{f}^{-1}(F) \in CI(X/\sim).$$

Then, \tilde{f} is V-continuous.

 \tilde{f} is increasing: Let $\bar{x} \leq^0 \bar{y} \in X/\sim$. Using the fact that $\overline{z'_i} = \overline{z^*_i}$ implies $f(z'_i) = f(z^*_i)$, we can see that $f(x) \subseteq f(z_1) \subseteq \cdots \subseteq f(z_{n-1}) \subseteq f(y)$. So, $\tilde{f}(\bar{x}) \subseteq \tilde{f}(\bar{y})$ and \tilde{f} is increasing.

In the category **Top**, an object is said to be $T_{(i,j)}$ if its T_i -reflection is a T_j -space $(i \in \{0, 1, 2\})$. This definition can be found in [3]. Similarly, in our category, **OVPT** is said to be an ordered $T_{(0,1)}$ if X/\sim is T_1 . Our goal now is to characterize those objects. First, let us introduce the following definition.

Definition 3.6. Let (X, a, \leq) be an ordered pre-topological space. The relative order of (X, a, \leq) is denoted by $\preceq_{(X, a, \leq)}$ (\preceq for short) and defined on X by: $x \preceq y$ if and only if there exist $k_i, k'_i, k^*_i \in X$ $(0 \leq i \leq n)$ satisfying

- $Co(k_0) = Co(x);$
- $Co(k_n) = Co(y);$
- $Co(k_i) = Co(k_i') = Co(k_i^*) \ \forall \ 0 \le i \le n;$
- $k'_i \le k^*_{i+1} \,\forall \, 0 \le i < n.$

Theorem 3.7. Let (X, a, \leq) be an ordered pre-topological space. Then, the following statements are equivalent:

- (a) $(X/\sim, \tilde{a}, \leq^0)$ is T_1 ;
- (b) $x \not\leq y$ implies that there exist $O_1 \in OI(X)$ and $O_2 \in OD(X)$ such that $x \in O_1 \setminus O_2$ and $y \in O_2 \setminus O_1$;

(c)

$$i(T_x) = \bigcap \{ O \mid O \in OI(X) \& x \in O \}$$

and

$$d(T_x) = \bigcap \{ O \mid O \in OD(X) \& x \in O \},$$

where $T_x = \{ y \in X \mid Co(y) = Co(x) \}.$

Proof. (a) \Leftrightarrow (b): It is sufficient to see that $x \leq y$ if and only if $\bar{x} \leq^0 \bar{y}$ and $O \in OI(X)$ (resp. $O \in OD(X)$) if and only if $\mu_X(O) \in OI(X/\sim)$ (resp. $\mu_X(O) \in OI(X/\sim)$).

(a) \Rightarrow (c): If $z \in i(T_x)$, then there exists $y \in T_x$ such that $y \leq z$. Now, let $O \in OI(X)$ such that $x \in O$. Since $y \in T_x$, $y \in O$ and $z \in O$, which proves that $i(T_x) \subseteq \bigcap \{O \mid O \in OI(X) \& x \in O\}$.

Conversely, let $y \in \bigcap \{ O \mid O \in OI(X) \& x \in O \}$. Suppose that $y \notin i(T_x)$. By definition of \leq^0 , we could see that $\bar{x} \nleq^0 \bar{y}$ in X/\sim . Since $(X/\sim, \tilde{a}, \leq^0)$ is T_1 , there exists $\tilde{O} \in OI(X/\sim)$ such that $\bar{x} \in \tilde{O}$ and $\bar{y} \notin \tilde{O}$. So, $\mu_X^{-1}(\tilde{O}) \in OI(X)$, $x \in \mu_X^{-1}(\tilde{O})$ and $y \notin \mu_X^{-1}(\tilde{O})$, which is a contradiction. We can deduce that $y \in i(T_x)$ and

$$\bigcap \{ O \mid O \in OI(X) \& x \in O \} \subseteq i(T_x).$$

(c) \Rightarrow (a): Let $\bar{x}, \bar{y} \in X/\sim$ such that $\bar{x} \nleq^0 \bar{y}$. Then, $y \notin i(T_x)$ and $x \notin d(T_y)$. So, there exists $O_1 \in OI(X)$ and $O_2 \in OD(X)$ such that $x \in O_1 \setminus O_2$ and $y \in O_2 \setminus O_1$. This implies $\mu_X(O_1) \in OI(X/\sim)$, $\mu_X(O_2) \in OD(X/\sim)$, $\bar{x} \in \mu_X(O_1) \setminus \mu_X(O_2)$ and $\bar{y} \in \mu_X(O_2) \setminus \mu_X(O_1)$. We conclude that $(X/\sim, \tilde{a}, \leq^0)$ is T_1 .

4. Orthogonality

A morphism $f: A \longrightarrow B$ and an object X in a category C are called orthogonal [11], if the mapping $hom_C(f; X) : hom_C(B; X) \longrightarrow hom_C(A; X)$ that takes g to gf is bijective. For a class of morphisms Σ (resp., a class of objects D), we denote by Σ^{\perp} the class of objects orthogonal to every f in Σ (resp., by D^{\perp} the class of morphisms orthogonal to all X in D) [11].

The orthogonality class of morphisms D^{\perp} associated with a reflective subcategory D of a category C satisfies the following identity $D^{\perp \perp} = D$ [2, Proposition 2.6]. Thus, it is of interest to give explicitly the class D^{\perp} . Note also that, if $I : D \longrightarrow C$ is the inclusion functor and $F : C \longrightarrow D$ is a left adjoint functor of I, then the class D^{\perp} is the collection of all morphisms of C rendered invertible by the functor F (i.e. $D^{\perp} = \{f \in hom_C : F(f) \text{ is an isomorphism of } D\})$ [2, Proposition 2.3].

This section is devoted to the study of the orthogonal class $\mathbf{OVPT}_{\mathbf{0}}^{\perp}$; hence, we will give a characterization of morphisms rendered invertible by the functor T_0 in the category \mathbf{OVPT} .

Firstly, in an ordered pre-topological space (X, a, \leq) , a subset A of X is said to be saturated if we have the following implication:

$$x \in A \Rightarrow \{y \in X \mid Co(x) = Co(y)\} \subseteq A.$$

We denote by CS(X) the set of all saturated subsets of X.

8

The next definition presents an equivalent definition of quasi-homeomorphism given by Grothendiek in [12].

Definition 4.1. Let $f : (X, a, \leq) \longrightarrow (Y, b, \subseteq)$ be an increasing V-continuous map. f is said to be a quasi-isomorphism in **OVPT** if the map

$$\begin{array}{cccc} \varphi_f : & CS(Y) & \longrightarrow & CS(X) \\ & A & \longmapsto & f^{-1}(A) \end{array}$$

is bijective.

Example 4.2. (1) $\mu_X : (X, a, \leq) \longrightarrow (X/\sim, \tilde{a}, \leq^0)$ is a quasi-isomorphism in **OVPT**.

(2) Every isomorphism in **OVPT** is a quasi-isomorphism.

The following result is immediate.

Proposition 4.3. Let $f : (X, a, \leq) \longrightarrow (Y, b, \subseteq), g : (Y, b, \subseteq) \longrightarrow (Z, c, \preceq)$ be two increasing V-continuous maps and $h = g \circ f$. Then, the set $\{f, g, h\}$ cannot contain exactly two quasi-isomorphisms in **OVPT**.

Proposition 4.4. Let $f : (X, a, \leq) \longrightarrow (Y, b, \subseteq)$ be a quasi-isomorphism in **OVPT**. If (X, a, \leq) is T_0 , then f is one to one.

Proof. Let $x, y \in X$ such that f(x) = f(y). Suppose that $x \neq y$. Since (X, a, \leq) is T_0 , there exists $A \in CM(X)$ containing for example x and not y. Since f is a quasi-isomorphism, there is $T \in CS(Y)$ such that $f^{-1}(T) = A$ and $f(x) \in T$ and $f(y) \notin T$, which is a contradiction.

Definition 4.5. Let $f : (X, a, \leq) \longrightarrow (Y, b, \subseteq)$ be an increasing V-continuous map.

- (1) f is said to be V-one-to-one if, for all $x, y \in X$, we have Co(f(x)) = Co(f(y)) implies Co(x) = Co(y).
- (2) f is said to be V-onto if, for every $y \in Y$, there exists $x \in X$ such that Co(f(x)) = Co(y).
- (3) f is called V-bijective if it is both V-one-to-one and V-onto.

Remarks 4.6. (1) If f is one-to-one (resp. onto), then f is V-one-to-one (resp. V-onto).

(2) If (X, a, \leq) is not T_0 , then $\mu_X : (X, a, \leq) \longrightarrow (X/\sim, \tilde{a}, \leq^0)$ is V-one-to-one but not one-to-one.

Let $f: (X, a, \leq) \longrightarrow (Y, b, \subseteq)$ be an increasing V-continuous map. We denote by $T_0(f)$ the map defined on $(X/\sim, \tilde{a}, \leq^0)$ to $(Y/\sim, \tilde{b}, \subseteq^0)$ rendering commutative the following diagram:

$$(X, a, \leq) \xrightarrow{f} (Y, b, \subseteq)$$

$$\mu_X \downarrow \qquad \circlearrowright \qquad \downarrow^{\mu_Y}$$

$$(X/\sim, \tilde{a}, \leq^0) \xrightarrow{T_0(f)} (Y/\sim, \tilde{b}, \subseteq^0)$$

Lemma 4.7. We have the following equivalences:

- (1) f is V-one-to-one if and only if $T_0(f)$ is one-to-one;
- (2) f is V-onto if and only if $T_0(f)$ is onto;
- (3) f is V-bijective if and only if $T_0(f)$ is bijective.

Definition 4.8. Let $f: (X, a, \leq) \longrightarrow (Y, b, \subseteq)$ be an increasing V-continuous map. f is said to be V_0 -increasing if $y \subseteq z \in Y$ implies that there exist $a, b \in X$ such that $a \leq b$, Co(f(a)) = Co(y) and Co(f(b)) = Co(z).

Theorem 4.9. Let $f : (X, a, \leq) \longrightarrow (Y, b, \subseteq)$ be an increasing V-continuous map. Then, the following statements are equivalent:

- (a) f is a V-onto V_0 -increasing quasi-isomorphism in **OVPT**.
- (b) $T_0(f)$ is an isomorphism in **OVPT**.

Proof. (b) \Rightarrow (a): μ_X, μ_Y and $T_0(f)$ are quasi-isomorphisms and we have $T_0(f) \circ \mu_X = \mu_Y \circ f$. Then, by Proposition 4.3, f is a quasi-isomorphism.

Since $T_0(f)$ is onto, f is V-onto by Lemma 4.7.

Let $y_1 \subseteq y_2 \in Y$. Since f is V-onto, there exists $x_1, x_2 \in X$ such that $f(x_1) = \overline{y_1}$ and $\overline{f(x_2)} = \overline{y_2}$. Since μ_Y is increasing, we have $\overline{f(x_1)} \subseteq^0 \overline{f(x_2)}$, equivalently, $T_0(f)(\overline{x_1}) \subseteq^0 T_0(f)(\overline{x_2})$ so that $\overline{x_1} \leq^0 \overline{x_2}$. By the definition of \leq^0 , there exist $k_i, k'_i, k^*_i \in X$ $(0 \leq i \leq n)$ satisfying

 $\begin{aligned} &Co\left(k_{0}\right) = Co\left(x_{1}\right)\\ &Co\left(k_{n}\right) = Co\left(x_{2}\right)\\ &Co\left(k_{i}\right) = Co\left(k_{i}'\right) = Co\left(k_{i}^{*}\right) \ \forall \ 0 \leq i \leq n\\ &k_{i}' \leq k_{i}^{*} \ \forall \ 0 \leq i < n. \end{aligned}$

Finally, $t_0 = x_1, t_n = x_n, t_i = k_i$ for 0 < i < n and $t'_i = k'_i, t^*_i = k^*_i$ for $0 \le i \le n$ satisfy the conditions in Definition 4.8.

We deduce that f is V_0 -increasing.

 $(a) \Rightarrow (b)$: $T_0(f)$ is V-continuous because μ_X, μ_Y and $T_0(f)$ are V-continuous and $T_0(f) \circ \mu_X = \mu_Y \circ f$.

Let $\bar{x} \leq \bar{y}$ and z'_i, z^*_i satisfy the condition in (3.1).

We can see that $f(z'_i)$, $f(z^*_i)$ satisfy $\overline{f(z'_i)} = \overline{f(z^*_i)}$ and $f(z'_i) \subseteq f(z^*_{i+1})$, which is sufficient to prove that $\overline{f(x)} \subseteq^0 \overline{f(y)}$, or equivalently $T_0(f)(\overline{x}) \subseteq^0 T_0(f)(\overline{y})$. We can deduce that $T_0(f)$ is increasing.

We know that $T_0(f)$ is a quasi-isomorphism because μ_X, μ_Y and f are quasi-isomorphisms and $T_0(f) \circ \mu_X = \mu_Y \circ f$. Then, by Proposition 4.4, $T_0(f)$ is one-to-one.

Since f is V-onto, $T_0(f)$ is onto by Lemma 4.7.

 $T_0(f)^{-1}$ is V-continuous. Let $U \in CI(X/\sim)$, then $\mu_X^{-1}(U) \in CS(X)$. Since f is a quasi-isomorphism, there exists $T \in CS(Y)$ such that $f^{-1}(T) = \mu_X^{-1}(U)$. Finally, $\mu_Y(T) \in CI(Y/\sim)$ and

$$\mu_{Y}(T) = \mu_{Y}(f(f^{-1}(T))) = T_{0}(f)(\mu_{X}(\mu_{X}^{-1}(U))) = T_{0}(f)(U),$$

which proves that $T_0(f)^{-1}$ is V-continuous.

 $T_0(f)^{-1}$ is increasing because f is V_0 -increasing.

Acknowledgment. The authors gratefully acknowledge helpful corrections, comments, and suggestions of the anonymous referee which reinforce and clarify the presentation of our paper.

References

- M. Abbassi, S. Lazaar and A. Mhemdi, T₀-reflection and some separation axioms in PreTop, Filomat **32** (2018), 3289–3296.
- [2] A. Ayache and O. Echi, The envelope of a subcategory in topology and group theory, Int. J. Math. Math. Sci. 2005 (2005), 3787–3404.
- [3] K. Belaid, O. Echi and S. Lazaar, T_(α,β)-spaces and the Wallman compactification, Int. J. Math. Math. Sci. 2004 (2004), 3717–3735.
- [4] C. Casacuberta, A. Frei and G. C. Tan, *Extending localization functors*, J. Pure Appl. Algebra 103 (1995), 149–165.
- [5] A. Deleanu, A. Frei and P. Hilton, *Generalized Adams completion*, Cah. Topol. Géom. Différ. Catégoriques. 15 (1974), 61–82.
- [6] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics, Mathematics and its Applications 346, Kluwer Academic Publishers, Dordrecht, 1995.
- [7] E. Čech, Z. Frolík and M. Katětov, Topological Spaces, Academia, Prague, 1966.
- [8] R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcategories of presheaves, Theory Appl. Categ. 10 (2002), 410–423.
- [9] O. Echi and S. Lazaar, Quasihomeomorphisms and lattice equivalent topological spaces, Appl. Gen. Topol. 10 (2009), 227–237.
- [10] P.D. Finch, On the lattice-equivalence of topological spaces, J. Aust. Math. Soc. 6 (1966), 495–511.
- [11] P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra 2 (1972), 169–191.
- [12] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique. I., Die Grundlehren der mathematischen Wissenschaften 166, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- [13] H. Herrlich and G. Strecker, *H-closed spaces and reflective subcategories*, Math. Ann. 177 (1968), 302–309.
- [14] H-P. A. Künzi, T. A. Richmond, T_i-ordered reflections, Appl. Gen. Topol. 6 (2005), 207–216.
- [15] S. Lazaar and A. Mhemdi, On some properties of T₀-ordered reflection, Appl. Gen. Topol. 15 (2014), 43–54.
- [16] S. Mac Lane, *Categories for the Working Mathematician*, Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1971.
- [17] Gh. Mirhosseinkhani, Quasihomeomorphisms and meetsemilattice equivalence of generalaized topological spaces, Acta Math. Hungar, 147 (2015), 272–285.
- [18] L. Nachbin, Topology and Order, Van Nostrand Mathematical Studies 4, Princeton, New Jersey, 1965.
- [19] W. Tholen, Reflective subcategories, Topology Appl. 27 (1987), 201–212.
- [20] W. J. Thron, Lattice-equivalence of topological spaces, Duke Math. J. 29 (1962), 671–679.

Mouldi Abbassi, University of Gafsa, Tunisia e-mail: mld_abassi@yahoo.fr

Sami Lazaar, Department of Mathematics, college of science, Taibah University, Saudi Arabia *e-mail*: salazaar72@yahoo.fr

Abdelwaheb Mhemdi, Department of Mathematics, College of Sciences and Humanities in Aflaj, Prince Sattam Bin Abdulaziz University, Saudi Arabia *e-mail*: mhemdiabd@gmail.com