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ON THE CATEGORY OF ORDERED PRE-TOPOLOGICAL
SPACES

MOULDI ABBASSI, SAMI LAZAAR and ABDELWAHEB MHEMDI

Abstract. A pre-topological space equipped with an order is called an ordered pre-
topological space. These spaces form the objects of a category which will be de-
noted by OVPT. The arrows of this category are certain increasing maps called
V -continuous. Essentially, we will prove that the subcategory of ordered pre-
topological spaces of type T0, OVPT0, is reflective in OVPT. We introduce and
study some new separation axioms and characterize the class of morphisms orthog-
onal to the objects of OVPT0.

1. Introduction

Categorical topologists are interested in developing different reflections in the cat-
egory TOP of topological spaces with continuous maps as arrows. For more
information on reflective subcategories we cite [4, 5, 8, 19]. Especially, concerning
the category TOP, interesting results can be found in [6, 9, 10, 20]. Herrlich and
Strecker described in their paper [13] some methods of constructing reflections
related to separation axioms like T0-, T1- and T2-reflection in TOP.

The study of T0-reflection was generalized to other categories. As examples
we can cite the category of the ordered topological space ORDTOP in [14, 15]
(ordered topological spaces are presented by Nachbin in [18]), the category of the
generalized topology GenTOP in [17], and the category of the pretopological
spaces PreTOP in [1].

Here, we will consider this concept in the category of the ordered pre-topological
space of type V denoted OVPT.

In Section 2, we recall some notions and definitions used throughout this paper
and we will introduce the new category OVPT of ordered pre-topological spaces of
type V as objects and we will define its arrows. In Section 3, the construction of the
T0-reflection will be given. Finally, Section 4 will be devoted to the characterization
of arrows in OVPT orthogonal to the full subcategory OVPT0 where objects are
of type T0.

MSC (2020): primary 54F05; secondary 54C99, 54B15.
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2. Preliminary

In this section, we will introduce definitions and notations which will be used
throughout this paper. We start by the definition of a pre-topological space given
using the Čech closure operator [7].

Definition 2.1. Let X be a nonempty set and a be a map from the power set
of X, P(X) to itself. a is called a Čech closure operator on X if it satisfies:

(1) a(∅) = ∅;
(2) ∀A ∈ P(X), A ⊆ a(A);
(3) a(A ∪ B) = a(A) ∪ a(B) for all A, B ∈ P(X).

In this case, (X, a) is called a pre-topological space of type V or, for short, a pre-
topological space.

When ≤ is a partial order on X, then the triplet (X, a, ≤) is called an ordered
pre-topological space.

In this paper, all pre-topological spaces are considered of type V.

Definition 2.2. Let (X, a) be an ordered pre-topological space and A a subset
of X. Then,
(1) A is said to be a quasi-closed set (q-closed set for short) if there exists a subset

B of X such that A = a(B). The set of q-closed sets of X will be denoted by
QC(X).

(2) A is said to be a closed set if a(A) = A. The set of closed sets of X will be
denoted by C(X).

(3) A will be a quasi-open (q-open for short) set (resp. an open set) if Ac ∈ QC(X)
(resp. Ac ∈ C(X)). The set of q-open sets (resp. open sets) of X will be
denoted by QO(X) (resp. O(X)).

Remark 2.3. We have the following implication:
closed (resp. open) =⇒ q-closed (resp. q-open)

Example 2.4. Let X = {0, 1, 2} and a : P(X) →: P(X) defined by a(∅) =
∅, a({0}) = {0}, a({1}) = {0, 1}, a({2}) = {1, 2}, a({0, 1}) = {0, 1}, a({0, 2}) =
a({1, 2}) = a(X) = X. (X, a) is an ordered pre-topological space and we have:

(1) C(X) = {∅, {0}, {0, 1}, X};
(2) QC(X) = {∅, {0}, {0, 1}, {1, 2}, X};
(3) O(X) = {∅, {2}, {1, 2}, X};
(4) QO(X) = {∅, {0}, {2}, {1, 2}, X}.

Notation 2.5. Let (X, a, ≤) be an ordered pre-topological space and A be
a nonempty subset of X. The increasing (resp. decreasing) hull of A denoted by
i(A) (resp. d(A)) is defined by:

i(A) = {y ∈ X : ∃x ∈ A with x ≤ y}.

(resp. d(A) = {y ∈ X : ∃x ∈ A with y ≤ x}) .

If i(A) = A (resp. d(A) = A), then A is called an increasing (resp. decreasing)
set (see [14]).
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We also consider the following notations:
• We denote by CI(X) (resp. CD(X)) the collection of all increasing (resp. de-

creasing) closed sets of X.
• We denote by QCI(X) (resp. QCD(X)) the collection of all increasing (resp.

decreasing) q-closed sets of X.
• We denote by OI(X) (resp. OD(X)) the collection of all increasing (resp. de-

creasing) open sets of X.
• We denote by QOI(X) (resp. QOD(X)) the collection of all increasing (resp.

decreasing) q-open sets of X.
• We denote by CM(X) the set CI(X) ∪ CD(X).
• V I(A) =

⋂
{F |F ∈ CI(X) & A ⊆ F}.

• V D(A) =
⋂

{F |F ∈ CD(X) & A ⊆ F}.
• We denote by Co(A) the set V I(A) ∩ V D(A).

Example 2.6. Let X = R ∪ {−∞, +∞} with the natural order and a the
closure operator defined, for all A ⊆ X, by:

• a(A) = A ∪ {+∞} if −∞ ∈ A;
• a(A) = A if −∞ /∈ A and A is finite;
• a(A) = A ∪ {−∞} if −∞ /∈ A and A is infinite.

(X, a, ≤) is an ordered pre-topological space. We have

a({+∞}) = {+∞} and i({+∞}) = {+∞}, so {+∞} ∈ CI(X).

We have

d({−∞}) = {−∞} but a({−∞}) = {−∞, +∞}, so {+∞} /∈ CD(X).

We have

a({0}) = {0} but i({0}) = R+ ∪ {+∞}, so {0} /∈ CI(X).

Lemma 2.7. Let (X, a, ≤) be an ordered pre-topological space. Then, we have
the following equivalence:

Co(x) = Co(y) ⇐⇒ V I(x) = V I(y) & V D(x) = V D(y).

Proof. Suppose that Co(x) = Co(y). Without lost of generality it is sufficient
to prove that V I(x) ⊆ V I(y). Let t ∈ V I(x) and F be an increasing closed set
containing y. If t /∈ F , then x must be outside F (t ∈ V I(x)), which contradicts
the fact that x ∈ Co(x) = Co(y) ⊆ F. Then, we deduce that I(x) ⊆ I(y).

The converse implication follows immediately. □

Definition 2.8. Let (X, a, ≤) and (Y, b, ⊆) be two ordered pre-topological
spaces. An increasing map f from X to Y is said to be V-continuous if the inverse
image of a closed increasing (resp. decreasing) set of Y is a closed increasing (resp.
decreasing) set of X.

Example 2.9. In R, we define a and b, for all F ⊆ R, by:
• If the infimum and the supremum of F exist: a(F ) =] − α(F ) − 1, α(F ) + 1[ and

b(F ) =] − α(F ), α(F )[ where α(F ) = max{| inf(F )|, | sup(F )|}.
• else, a(F ) = b(F ) = R.
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Then, (R, a, ≤) and (R, b, ≤) are two ordered pre-topological spaces. Consider
the map f defined from (R, a, ≤) to (R, b, ≤) by f(x) = 2 if 0 ≤ x and f(x) = 1 if
0 ≰ x.

It is clear that f is an increasing map. The unique monotone closed set of
(R, b, ≤) is R, so f is V-continuous.

We can also remark that ]−1.5, 1.5[ is a closed set in (R, b) but f−1(]−1.5, 1.5[) =
] − ∞, 0[, which is not closed in (R, a). This example proves that the V-continuity
does not imply the continuity between pre-topological spaces without regarding
the order.

According to the definition of separation axioms for topological spaces, we in-
troduce the following equivalent definition:

Definition 2.10. Let (X, a, ≤) be an ordered pre-topological space. Then,
(1) (X, a, ≤) is said to be T0 (resp. QT0) if, for all distinct two points of X, there

exists a monotone open (resp. q-open) set containing one of the points which
does not contain the other one.

(2) (X, a, ≤) is said to be T1 (resp. QT1) if, for all x ≰ y, there exists an increasing
open (resp. q-open) set containing x which does not contain y and there exists
a decreasing open (resp. q-open) set containing y which does not contain x.

(3) (X, a, ≤) is said to be T2 (resp. QT2) if, for all x ≰ y, there exists an increasing
open (resp. q-open) set containing x disjoint from some decreasing open (resp.
q-open) set containing y.

Remark 2.11. The following implications hold:
(1) Ti ⇒ QTi for all i ∈ {0, 1, 2}.
(2) Ti ⇒ Ti−1 for all i ∈ {1, 2}.
(3) QTi ⇒ QTi−1 for all i ∈ {1, 2}.

In ordered pre-topological spaces, the complement of an increasing (resp. de-
creasing) closed set is a decreasing (resp. increasing) open set. Then, replacing
open by closed, increasing by decreasing and decreasing by increasing in Defini-
tion 2.10 results in the same definitions.

Proposition 2.12. Let (X, a, ≤) be an ordered pre-topological space. Then, the
following statements are equivalent:

(a) (X, a, ≤) is T0;
(b) V I(x) = V I(y) and V D(x) = V D(y) implies x = y;
(c) Co(x) = Co(y) implies x = y.

Proof. (a) ⇒ (b): Let x ̸= y ∈ X. Then, there exists a monotone closed set
F containing, for example, x which does not contain y. If F is increasing (resp.
decreasing), then it contains CI(x) (resp. CD(x)) and then CI(x) ̸= CI(y) (resp.
CD(x) ̸= CD(y)).

(b) ⇒ (a): If x ̸= y ∈ X, then, for example, CI(x) ̸= CI(y). So, CI(x) (or
CI(y)) is an increasing closed set containing one of the points and not containing
the other one.

(b) ⇔ (c): It is a direct consequence of Lemma 2.7. □
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Proposition 2.13. Let (X, a, ≤) be an ordered pre-topological space. Then, the
following statements are equivalent:

(a) (X, a, ≤) is T1;
(b) i(x) and d(x) are closed for all x ∈ X.

Proof. (a) ⇒ (b): Let x ∈ X. We have to prove that a(i(x)) = i(x). Suppose
that there exists y ∈ X such that y ∈ a(i(x)) \ i(x). Since (X, a, ≤) is T1, there
exists an increasing closed set F containing x that does not contain y. x ∈ F implies
i(x) ⊆ F and then a(i(x)) ⊆ a(F ) = F so that y ∈ F , which is a contradiction.
We can deduce that a(i(x)) = i(x).

(b) ⇒ (a): Let x ≰ y. Then d(y)c is an increasing open set containing x that
does not contain y and i(x)c is a decreasing open set containing y which does not
contain x. □

Example 2.14. Let X = {0, 1} and a be the closure operator defined on X
by:

• a(∅) = ∅;
• a({0}) = {0};
• a({1}) = X;
• a(X) = X.

(X, a, ≤) is an ordered pre-topological space where ≤ is the order induced from N.
So, we have:

(1) CI(X) = {X};
(2) CD(X) = {{0}, X}.

Then, (X, a, ≤) is T0 but not T1.

Ordered pre-topological spaces with increasing V-continuous functions form
a category called OVPT. Its full subcategory of an ordered topological space
of type T0 will be denoted by OVPT0.

3. Reflection construction

The main goal of this section, and the paper, is to construct the T0-reflection in
OVPT.

By Maclane [16], to show that the full subcategory OVPT0 is reflective in
OVPT, it will be sufficient to prove that, for each (X, a, ≤) ∈ OVPT, there
exists an object (T0(X), ã, ≤0) ∈ OVPT0 and an arrow

g : (X, a, ≤) → (T0(X), ã, ≤0)

such that, for every (Y, b, ⊆) ∈ OVPT0 and each increasing V-continuous map
f : (X, a, ≤) → (Y, b, ⊆), there exists an increasing V -continuous map

f̃ : (T0(X), ã, ≤0) → (Y, b, ⊆)

rendering commutative the following diagram:
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(X, a, ≤)

▽

g
//
(
T0(X), ã, ≤0)

f̃
ww

(Y, b, ⊆)
%%

f

Let (X, a, ≤) be an ordered pre-topological space. The relation defined on X
by x ∼ y if and only if V I(x) = V I(y) and V D(x) = V D(y) is an equivalence
relation. The quotient set of this equivalence relation is denoted by X/∼ and µX

denotes the canonical surjection from X onto X/∼.
Let ã be the map defined on P(X/∼) to itself by

ã(A) = µX(a(µ−1
X (A))).

Proposition 3.1. (X/∼, ã) is a pre-topological space of type V.
Proof. One can easily see that ã satisfies the conditions in Definition 2.1. □

In the ordered pre-topological space (X/∼, ã), we will take the finite step order
≤0, which is defined by: z0 ≤0 zn if and only if:

∃ z1, . . . , zn−1 and ∃ z
′

i, z∗
i ∈ zi (i = 0, 1, . . . , n)

with z
′

i ≤ z∗
i+1 ∀i = 0, 1, . . . , n − 1. (3.1)

Proposition 3.2. (1) If A ∈ CI(X), then µX(A) ∈ CI(X/∼).
(2) If B ∈ CI(X/∼), then µ−1

X (B) ∈ CI(X).
Proof. We start by proving that A ∈ CI(X) if and only if µ−1

X (µX(A)) = A. The
inclusion A ⊆ µ−1

X (µX(A)) is straightforward. Conversely, let y ∈ µ−1
X (µX(A)) and

x ∈ A such that µX(x) = µX(y). Since A is increasing closed, CI(x) ⊆ A and y ∈
CI(y) = CI(x) ⊆ A. This fact proves that A ∈ CI(X) implies µ−1

X (µX(A)) = A.
The converse implication is easy to prove.
(1) Suppose that A ∈ CI(X). The equality µ−1

X (µX(A)) = A implies
ã(µX(A)) = µX(a(µ−1

X (µX(A)))) = µX(a(A)) = µX(A).
Then, µX(A) is V-closed. The definition of the finite step order implies the
increase of µX(A). Thus, µX(A) ∈ CI(X/∼).

(2) Let B ∈ CI(X/∼). We have µ−1
X (B) ⊆ a(µ−1

X (B)). On the other hand,
a(µ−1

X (B)) ⊆ µ−1
X (µX(a(µ−1

X (B)))) = µ−1
X (ã(B)) = µ−1

X (B).
Thus, a(µ−1

X (B)) = µ−1
X (B) and then µ−1

X (B) ∈ C(X). Let x ∈ µ−1
X (B) and

y ∈ X such that x ≤ y. So, x̄ ∈ B and x̄ ≤0 ȳ, which proves that ȳ ∈ B
because B is increasing, y ∈ µ−1

X (B) and, finally, µ−1
X (B) ∈ CI(X).

□

Corollary 3.3. µX : (X, a) → (X/∼, ã) is an increasing V-continuous map.
Theorem 3.4. (X/∼, ã, ≤0) is T0.
Proof. Let µX(x) ̸= µX(y) ∈ X/∼. There exists an increasing V-closed set A

containing, for example, x which does not contain y. Thus, µX(A) is an increasing
closed set of X/∼ containing µX(x) which does not contain µX(y). This proves
that (X/∼, ã, ≤0) is T0. □
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Theorem 3.5. OVPT0 is reflective in OVPT.

Proof. It suffices to prove that, for any ordered pre-topological space (X, a, ≤),
(X/∼, ã, ≤0) is the T0-reflection of (X, a, ≤).

For this, using the characterization given by MacLane, we must prove that, for
every (Y, b, ⊆) which is T0 and every increasing V-continuous map from (X, a, ≤)
to (Y, b, ⊆), there exists a unique increasing V-continuous map f̃ rendering the
following diagram commutative:

(X, a, ≤)

▽

µX
//
(

X/∼, ã, ≤0)
f̃

xx

(Y, b, ⊆)
%%

f

Uniqueness: Clearly, if f̃ exists, then it is unique and naturally defined by
f̃ (µX(x)) = f (x) .

f̃ is well defined: Suppose x, y ∈ X and µX(x) = µX(y). If f (x) ̸= f (y) and
since (Y, b, ⊆) is T0, then there exists a monotone closed set A which contains for
example f(x) which does not contain f(y). So, f−1(A) is a monotone closed set
which contains x and contains y. This is a contradiction.

f̃ is V-continuous: Let F be an increasing closed set of (Y, b, ⊆). We have
µ−1

X

(
f̃−1 (F )

)
= f−1 (F ) ∈ CI (X), then, by Proposition 3.2, we have

µX

(
µ−1

X (f̃−1 (F ))
)

= f̃−1 (F ) ∈ CI (X/∼) .

Then, f̃ is V-continuous.
f̃ is increasing: Let x̄ ≤0 ȳ ∈ X/∼. Using the fact that z′

i = z∗
i implies f (z′

i) =
f (z∗

i ), we can see that f (x) ⊆ f (z1) ⊆ · · · ⊆ f (zn−1) ⊆ f (y) . So, f̃ (x̄) ⊆ f̃ (ȳ)
and f̃ is increasing. □

In the category Top, an object is said to be T(i,j) if its Ti-reflection is a Tj-
space (i ∈ {0, 1, 2}). This definition can be found in [3]. Similarly, in our category,
OVPT is said to be an ordered T(0,1) if X/∼ is T1. Our goal now is to characterize
those objects. First, let us introduce the following definition.

Definition 3.6. Let (X, a, ≤) be an ordered pre-topological space. The relative
order of (X, a, ≤) is denoted by ⪯(X,a,≤) (⪯ for short) and defined on X by:

x ⪯ y if and only if there exist ki, k′
i, k∗

i ∈ X (0 ≤ i ≤ n) satisfying
• Co (k0) = Co (x);
• Co (kn) = Co (y);
• Co (ki) = Co (k′

i) = Co (k∗
i ) ∀ 0 ≤ i ≤ n;

• k′
i ≤ k∗

i+1 ∀ 0 ≤ i < n.

Theorem 3.7. Let (X, a, ≤) be an ordered pre-topological space. Then, the
following statements are equivalent:

(a)
(

X/∼, ã, ≤0)
is T1;

(b) x ⪯̸ y implies that there exist O1 ∈ OI (X) and O2 ∈ OD (X) such that
x ∈ O1 \ O2 and y ∈ O2 \ O1;
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(c)
i (Tx) =

⋂
{O | O ∈ OI (X) & x ∈ O}

and
d (Tx) =

⋂
{O | O ∈ OD (X) & x ∈ O},

where Tx = {y ∈ X | Co (y) = Co (x)}.

Proof. (a) ⇔ (b): It is sufficient to see that x ⪯ y if and only if x̄ ≤0 ȳ
and O ∈ OI (X) (resp. O ∈ OD (X)) if and only if µX (O) ∈ OI (X/∼) (resp.
µX (O) ∈ OI (X/∼)).

(a) ⇒ (c): If z ∈ i (Tx) , then there exists y ∈ Tx such that y ≤ z. Now, let
O ∈ OI (X) such that x ∈ O. Since y ∈ Tx, y ∈ O and z ∈ O, which proves that
i (Tx) ⊆

⋂
{O | O ∈ OI (X) & x ∈ O} .

Conversely, let y ∈
⋂

{O | O ∈ OI (X) & x ∈ O} . Suppose that y /∈ i (Tx) .
By definition of ≤0, we could see that x̄ ≰0 ȳ in X/∼. Since

(
X/∼, ã, ≤0)

is T1,

there exists Õ ∈ OI (X/∼) such that x̄ ∈ Õ and ȳ /∈ Õ. So, µ−1
X

(
Õ

)
∈ OI(X),

x ∈ µ−1
X

(
Õ

)
and y /∈ µ−1

X

(
Õ

)
, which is a contradiction. We can deduce that

y ∈ i (Tx) and ⋂
{O | O ∈ OI (X) & x ∈ O} ⊆ i (Tx) .

(c) ⇒ (a): Let x̄, ȳ ∈ X/∼ such that x̄ ≰0 ȳ. Then, y /∈ i (Tx) and x /∈ d (Ty) . So,
there exists O1 ∈ OI (X) and O2 ∈ OD (X) such that x ∈ O1 \O2 and y ∈ O2 \O1.
This implies µX (O1) ∈ OI (X/∼), µX (O2) ∈ OD (X/∼), x̄ ∈ µX (O1) \ µX (O2)
and ȳ ∈ µX (O2) \ µX (O1) . We conclude that

(
X/∼, ã, ≤0)

is T1. □

4. Orthogonality

A morphism f : A −→ B and an object X in a category C are called orthogonal
[11], if the mapping homC(f ; X) : homC(B; X) −→ homC(A; X) that takes g to
gf is bijective. For a class of morphisms Σ (resp., a class of objects D), we denote
by Σ⊥ the class of objects orthogonal to every f in Σ (resp., by D⊥ the class of
morphisms orthogonal to all X in D) [11].

The orthogonality class of morphisms D⊥ associated with a reflective subcat-
egory D of a category C satisfies the following identity D⊥⊥ = D [2, Proposi-
tion 2.6]. Thus, it is of interest to give explicitly the class D⊥. Note also that, if
I : D −→ C is the inclusion functor and F : C −→ D is a left adjoint functor
of I, then the class D⊥ is the collection of all morphisms of C rendered invert-
ible by the functor F (i.e. D⊥ = {f ∈ homC : F (f) is an isomorphism of D})
[2, Proposition 2.3].

This section is devoted to the study of the orthogonal class OVPT⊥
0 ; hence,

we will give a characterization of morphisms rendered invertible by the functor T0
in the category OVPT.

Firstly, in an ordered pre-topological space (X, a, ≤), a subset A of X is said to
be saturated if we have the following implication:

x ∈ A ⇒ {y ∈ X | Co(x) = Co(y)} ⊆ A.

We denote by CS (X) the set of all saturated subsets of X.
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The next definition presents an equivalent definition of quasi-homeomorphism
given by Grothendiek in [12].

Definition 4.1. Let f : (X, a, ≤) −→ (Y, b, ⊆) be an increasing V-continuous
map. f is said to be a quasi-isomorphism in OVPT if the map

φf : CS(Y ) −→ CS(X)
A 7−→ f−1(A)

is bijective.

Example 4.2. (1) µX : (X, a, ≤) −→ (X/∼, ã, ≤0) is a quasi-isomorphism in
OVPT.

(2) Every isomorphism in OVPT is a quasi-isomorphism.

The following result is immediate.

Proposition 4.3. Let f : (X, a, ≤) −→ (Y, b, ⊆), g : (Y, b, ⊆) −→ (Z, c, ⪯) be
two increasing V-continuous maps and h = g ◦ f . Then, the set {f, g, h} cannot
contain exactly two quasi-isomorphisms in OVPT.

Proposition 4.4. Let f : (X, a, ≤) −→ (Y, b, ⊆) be a quasi-isomorphism in
OVPT. If (X, a, ≤) is T0, then f is one to one.

Proof. Let x, y ∈ X such that f(x) = f (y) . Suppose that x ̸= y. Since (X, a, ≤)
is T0, there exists A ∈ CM(X) containing for example x and not y. Since f is
a quasi-isomorphism, there is T ∈ CS(Y ) such that f−1(T ) = A and f(x) ∈ T
and f(y) /∈ T , which is a contradiction. □

Definition 4.5. Let f : (X, a, ≤) −→ (Y, b, ⊆) be an increasing V-continuous
map.
(1) f is said to be V-one-to-one if, for all x, y ∈ X, we have Co (f (x)) = Co (f (y))

implies Co (x) = Co (y) .
(2) f is said to be V-onto if, for every y ∈ Y , there exists x ∈ X such that

Co (f (x)) = Co (y) .
(3) f is called V-bijective if it is both V-one-to-one and V-onto.

Remarks 4.6. (1) If f is one-to-one (resp. onto), then f is V-one-to-one (resp.
V-onto).

(2) If (X, a, ≤) is not T0, then µX : (X, a, ≤) −→
(

X/∼, ã, ≤0)
is V-one-to-one but

not one-to-one.

Let f : (X, a, ≤) −→ (Y, b, ⊆) be an increasing V-continuous map. We denote
by T0 (f) the map defined on

(
X/∼, ã, ≤0)

to
(

Y/∼, b̃, ⊆0)
rendering commutative

the following diagram:

(X, a, ≤) f
//

µX

��

⟲

(Y, b, ⊆)

µY

��(
X/∼, ã, ≤0)

T0(f)
//
(

Y/∼, b̃, ⊆0)
Lemma 4.7. We have the following equivalences:
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(1) f is V-one-to-one if and only if T0 (f) is one-to-one;
(2) f is V-onto if and only if T0 (f) is onto;
(3) f is V-bijective if and only if T0 (f) is bijective.

Definition 4.8. Let f : (X, a, ≤) −→ (Y, b, ⊆) be an increasing V-continuous
map. f is said to be V0-increasing if y ⊆ z ∈ Y implies that there exist a, b ∈ X
such that a ⪯ b, Co (f (a)) = Co (y) and Co (f (b)) = Co (z) .

Theorem 4.9. Let f : (X, a, ≤) −→ (Y, b, ⊆) be an increasing V-continuous
map. Then, the following statements are equivalent:

(a) f is a V-onto V0-increasing quasi-isomorphism in OVPT.
(b) T0 (f) is an isomorphism in OVPT.

Proof. (b) ⇒ (a): µX , µY and T0 (f) are quasi-isomorphisms and we have
T0 (f) ◦ µX = µY ◦ f . Then, by Proposition 4.3, f is a quasi-isomorphism.

Since T0 (f) is onto, f is V-onto by Lemma 4.7.
Let y1 ⊆ y2 ∈ Y . Since f is V-onto, there exists x1, x2 ∈ X such that f (x1) = y1

and f (x2) = y2. Since µY is increasing, we have f (x1) ⊆0 f (x2), equivalently,
T0 (f) (x1) ⊆0 T0 (f) (x2) so that x1 ≤0 x2. By the definition of ≤0, there exist
ki, k′

i, k∗
i ∈ X (0 ≤ i ≤ n) satisfying
Co (k0) = Co (x1)
Co (kn) = Co (x2)
Co (ki) = Co (k′

i) = Co (k∗
i ) ∀ 0 ≤ i ≤ n

k′
i ≤ k∗

i ∀ 0 ≤ i < n.

Finally, t0 = x1, tn = xn, ti = ki for 0 < i < n and t′
i = k′

i, t∗
i = k∗

i for 0 ≤ i ≤ n
satisfy the conditions in Definition 4.8.

We deduce that f is V0-increasing.
(a) ⇒ (b): T0 (f) is V-continuous because µX , µY and T0 (f) are V-continuous

and T0 (f) ◦ µX = µY ◦ f .
Let x̄ ≤0 ȳ and z′

i, z∗
i satisfy the condition in (3.1).

We can see that f (z′
i) , f (z∗

i ) satisfy f (z′
i) = f (z∗

i ) and f (z′
i) ⊆ f

(
z∗

i+1
)
, which

is sufficient to prove that f (x) ⊆0 f (y), or equivalently T0 (f) (x̄) ⊆0 T0 (f) (ȳ) .
We can deduce that T0 (f) is increasing.

We know that T0 (f) is a quasi-isomorphism because µX , µY and f are quasi-
isomorphisms and T0 (f) ◦ µX = µY ◦ f . Then, by Proposition 4.4, T0 (f) is
one-to-one.

Since f is V-onto, T0 (f) is onto by Lemma 4.7.
T0 (f)−1 is V-continuous. Let U ∈ CI (X/∼), then µ−1

X (U) ∈ CS (X) . Since
f is a quasi-isomorphism, there exists T ∈ CS (Y ) such that f−1 (T ) = µ−1

X (U) .
Finally, µY (T ) ∈ CI (Y/∼) and

µY (T ) = µY

(
f

(
f−1 (T )

))
= T0 (f)

(
µX

(
µ−1

X (U)
))

= T0 (f) (U) ,

which proves that T0 (f)−1 is V-continuous.
T0 (f)−1 is increasing because f is V0-increasing. □
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