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AN INCREMENTAL METHOD FOR THE CONSTRUCTION OF
THE BOX EXTENTS OF A CONTEXT

SÁNDOR RADELECZKI and LAURA VERES

Abstract. In this paper we are improving a method proposed in [2] for the construc-
tion of the box extents of a given formal context. We prove that the lattice of the
box extents can be order-embedded in the lattice generated by the atomic extents
of the given context.

1. Introduction

The notion of the box extents of a context and the box elements of a concept lattice
are related to the application of Formal Concept Analysis [1] in data classification
by defining partitions of a universe putting its elements with similar attributes
into the same class, see [4, 6] and [2]. This task transparently appears in some
clustering problems originating in database analysis, as well as in the engineer-
ing discipline Group Technology, see, e.g., [9] or [8]. This discipline exploits the
similarities between technological objects and divides them into (relatively) homo-
geneous groups in order to optimize the manufacturing processes. In [2] it is proved
that the box extents of a formal context form a complete atomistic lattice and two
methods for the construction of this lattice are also presented. The second one
has an incremental character, it is based on consecutive one-object extensions of
a small context. Since, during a one-object extension, the number of box extents
can even be doubled, we present a construction and an algorithm to avoid this
problem. We also prove that the lattice of box extents can be order-embedded in
the lattice generated by the atomic extents of a formal context. These results are
presented in Section 3. Section 2 contains some preliminary notions and notations,
i.e., the prerequisites of our investigations.

2. Preliminaries

For the lattice-theoretic terminology used we refer to [3]. A formal context is
a triple K = (G,M, I), where G and M are sets and I ⊆ G × M is a binary
relation. G is called the object set and M the attribute set of the context K. The
basic notions of Formal Concept Analysis can be found, e.g., in [1] or [10]. There
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are defined

AI = {m ∈M | gIm for all g ∈ A},
BI = {g ∈ G | gIm for all m ∈ B}

for all subsets A ⊆ G and B ⊆ M . We will use the notations (AI)I = AII

and (BI)I = BII . For any g ∈ G, we will write gI and gII instead of {g}I and
{g}II . The obtained maps A → AI , A ⊆ G and B → BI , B ⊆ M constitute
a Galois connection between the power-set lattices ℘(G) and ℘(M), and the maps
A→ AII , A ⊆ G and B → BII , B ⊆M are closure operators on ℘(G) and ℘(M),
respectively. A formal concept of the context K is a pair (A,B) ∈ ℘(G) × ℘(M)
with AI = B and BI = A, where the set A is called the extent and B is called the
intent of the concept (A,B). It is easy to check that a pair (A,B) ∈ ℘(G)×℘(M)
is a concept if and only if (A,B) = (AII , AI) = (BI , BII). The set of all concepts
of the context (G,M, I) is denoted by L(G,M, I), and E(G,M, I) stands for the
set of all concept extents of (G,M, I). Ordering L(G,M, I) as follows

(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2,

we obtain a complete lattice, the concept lattice of the context K = (G,M, I). Sim-
ilarly, ordering the extents of K by ⊆, we get a lattice (E(G,M, I),⊆) isomorphic to
the concept lattice L(G,M, I). Now, let us consider the concepts γ(x) = (xII , xI)
for any x ∈ G. It can be easily proved that for any concept (A,B) ∈ L(G,M, I),
we have in L(G,M, I)

(A,B) =
∨
{γ(x) | x ∈ A}. (2.1)

In view of (2.1), any atom in the lattice L(G,M, I) has the form (xII , xI), where
x ∈ G. In this case, the extent xII being also an atom in E(G,M, I) is called an
atomic extent, and x ∈ G is called an atomic object. If every nonzero element of
a lattice L is a join of atoms of L, then L is called an atomistic lattice.

An extent partition of a formal context (G,M, I) is a partition of the set G, all
blocks of which are concept extents. Clearly, the trivial partition {G} is always
an extent partition. Note that, since the intersection of extents always yields an
extent, the common refinements of extent partitions are still extent partitions.
Therefore, the extent partitions of (G,M, I) form a complete ∩-subsemilattice of
the partition lattice of G and, thus, a complete lattice which will be denoted by
Ext(G,M, I). In particular, there is always a finest extent partition of the context
denoted by π�. In [2], an algorithm for finding π� was provided and it was pointed
out that this can be done in O(| G |2|M |) steps. The next definition is also from
[2]:

Definition 2.1. A set E ⊆ G is called a box extent of be the context K =
(G,M, I) if E is a class of some extent partition of K or E = ∅ if ∅II = ∅.

(Note that if ∅II 6= ∅, then {G} is the only extent partition of the context
(G,M, I)). The set of all box extents of K is denoted by BE(G,M, I). Observe
that each object g ∈ G is contained in a smallest box extent denoted by g��, which
is the class of the finest extent partition π� of the context (G,M, I) containing g.



CONSTRUCTION OF BOX EXTENTS 73

Hence, according to [2],

E ∈ E(G,M, I) is a box extent if and only if g ∈ E =⇒ g�� ⊆ E.

As a consequence, we get that the intersection of box extents is also a box extent.
As g�� is a box extent of (G,M, I), the inclusions {g} ⊆ gII ⊆ g�� always hold.
In [2], it was proved that, ordering the box extents by ⊆, we obtain a complete
atomistic lattice having as atoms the classes of the finest extent partition π�.
Moreover, this lattice BE(G,M, I) is a complete

⋂
-subsemilattice of E(G,M, I).

If A is a box extent, then the concept (A,AI) is called a box element of the
lattice L(G,M, I), see [4]. The set of the box elements of (G,M, I) is denoted by
B(G,M, I).

2.1. Box extents of a subcontext

Let K = (G,M, I) be a formal context and H ⊆ G. It is well-known that, for
each extent E of (G,M, I), the restriction E ∩ H is an extent of the subcontext
(H,M, I ∩ H × M). Similarly, if E is a box extent of (G,M, I), then E ∩ H
is a box extent of (H,M, I ∩ H ×M), according to [2]. In [2] it is also proved
that the finite extent partition πH

� of (H,M, I ∩ H ×M) is a refinement of the
restriction of π� to H. We say that the context (G,M, I) is a one-object extension
of (H,M, I ∩H ×M) if there exists an element z ∈ G such that H = Gr {z}.

The following well-known lemma will be useful in our proofs.

Lemma 2.2. (i) Any extent E of a finite formal context (G,M, I) contains
an atomic object.

(ii) If A ⊆ H ⊆ G, then AII∩H is an extent of the subcontext (H,M, I∩H×M).

Proof. (i) holds since any extent of a finite context contains an atomic extent.
As AII is an extent of (G,M, I), AII ∩H is an extent of (H,M, I∩H×M), hence,
(ii) holds. �

The next lemma follows from [2], however, to make our paper self-contained,
we provide a direct proof of it.

Lemma 2.3. Let K = (G,M, I) be a context with ∅II = ∅, and A ⊆ G the
nonempty set of its atomic objects. Then, the box extents of the context (A,M, I ∩
A×M) coincide with its extents and E(A,M, I ∩A×M) is an atomistic lattice.

Proof. First, observe that, for all a ∈ A, aII ⊆ A. Indeed, let a ∈ A and g ∈ aII .
Then, gII = aII yields that g is also an atomic object and hence g ∈ A. As ∅ is an
extent, the atomic extents aII are mutually disjoint. Since A =

⋃
{aII | a ∈ A},

we get that {aII | a ∈ A} is the least extent partition π� of (A,M, I∩A×M), and
for this context aII coincides to a��, i.e., to that class of its π� which contains a.
Now, let E be an arbitrary extent of the context (A,M, I ∩A×M). Then, a ∈ E
implies that a�� = aII ⊆ E and this means that E is a box extent. The remaining
part of the proof is an obvious consequence of the fact that BE(A,M, I ∩A×M)
is an atomistic lattice. �
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3. One-object extensions of a context and the proposed
incremental method

The following lemma shows that one-object extension can be used for an inductive
construction of the box extents:

Lemma 3.1. Let K = (G,M, I) be a finite formal context, B 6= ∅ a box extent
of K, H ⊆ G, and E = B ∩H. Then, E is a box extent of the subcontext

(H,M, I ∩H ×M)
and it is extended by successive one-object extensions to B in such a way that,
after each step, a box extent of the wider subcontext is obtained.

Proof. Since G is finite, it has the form G = H ∪ {z1, ..., zk}, z1, ..., zk /∈ H.
Hence, either B = E, or we have B = E ∪ {z1, ..., zl} with 1 ≤ l ≤ k. Set
Hj := H ∪ {z1, ..., zj}, 1 ≤ j ≤ l. Now, the proof is a trivial consequence of the
fact that, for each j ≤ l, B ∩Hj = E ∪ {z1, ..., zj} is a box extent of (Hj ,M, I ∩
Hj ×M), and it is formed by a one-object extension with zj from the box extent
E ∪ {z1, ..., zj−1}. �

In this section we use the results of the article [2], where the authors have shown
how the box extents of a context are changed by a one-object extension.

Proposition 3.2. ([2, Prop. 4.5]) If E is a box extent of (G,M, I) and H =
Gr {z} for some z ∈ G, then either

(i) E is a box extent of (H,M, I ∩H ×M) with E ∩ z�� = ∅ or
(ii) E r {z} is a box extent of (H,M, I ∩H ×M).

In view of the above proposition, in case of a one-object extension, any box
extent of the wider context (G,M, I) can be derived from a box extent of the
subcontext (H,M, I ∩ H ×M). The next theorem shows exactly the conditions
under which a box extent of the smaller context “gives life" to a box extent of
(G,M, I).

Theorem 3.3. ([2, Thm 5.5]) Let (G,M, I) be a context, E a box extent of the
subcontext (H,M, I ∩H ×M) with H = Gr {z}. Then

(i) E is a box extent of (G,M, I) if and only if z�� ∩ E′′ = ∅;
(ii) E∗ = E ∪ {z} is a box extent of (G,M, I) if and only if z�� \ {z} ⊆ E

and (E ∪ {z})′′ = E ∪ {z}.

Observe that, in view of the above theorem, in case of a one-object extension,
we have two possibilities:

1)E is also a box extent in the new context iff z�� ∩ E′′ = ∅;
2) or E ∪ {z} is a box extent in the new context iff z�� \ {z} ⊆ E and

(E ∪ {z})′′ = E ∪ {z}.
By applying this theorem, in [2] an algorithm for determining the list of the

box extents of (G,M, I) was constructed by using the list of the box extents of the
subcontext (H,M, I ∩H ×M). Unfortunately, the theorem shows that, during a
one-object extension of the context (H,M, I ∩ H ×M), the box extents can be
even doubled, for instance, in the case when z�� = {z}. This means that the
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algorithm discussed in [2] can have an exponential time. In order to eliminate this
problem, we first prove:

Proposition 3.4. Let K = (G,M, I) be a finite formal context, H ⊆ G
a nonempty subset containing all the atomic objects of K, E a box extent of the sub-
context (H,M, I∩H×M), and z ∈ G\H. Set H∗ := H∪{z} and I∗ = I∩H∗×M .
Then, the following cases exclude each other.

(1) E is a box extent of (H∗,M, I∗);
(2) E ∪ {z} is a box extent of (H∗,M, I∗).

Proof. Assume that the cases (1) and (2) hold simultaneously and denote by
z��∗ the class of the least extent partition of K∗ := (H∗,M, I∗) that contains the
element z. Then, in view of Theorem 3.3, both conditions z��∗ ∩ EI∗I∗ = ∅ and
z��∗ \ {z} ⊆ E are satisfied. Hence, we get

z��∗ \ {z} = (z��∗ \ {z}) ∩ E ⊆ z��∗ ∩ EI∗I∗ = ∅.

Since {z} ⊆ z
I∗I∗ ⊆ z��∗ , we obtain z��∗ = z

I∗I∗ = {z}. On the other hand,
because K is a finite context, there exists at least one atomic object a ∈ G with
aII ⊆ zII . Now, a ∈ H, according to our assumption. Thus, we obtain:
a ∈ aII ∩H ⊆ zII ∩H∗ = zI∗I∗ = {z}, i.e., z = a,

which is a contradiction because z /∈ H by our construction. �

Another problem, which arises when the box extents of a formal context K =
(G,M, I) are constructed by successive one-element extensions from the box ex-
tents of a subcontext (H,M, I ∩H ×M), is the requirement to construct in each
step the class z��∗ , i.e., the class of the least extent partition of the extended
context (H∗,M, I∗) containing the new element z. The next proposition shows
that z��∗ can be always replaced by the class z�� of the extent partition π� of
the whole K.

Proposition 3.5. Let B be a box extent of the context K = (G,M, I) H ⊆ G a
nonempty subset, B a box extent of K, and z ∈ G \H arbitrary. Set E := B ∩H,
and H∗ := H ∪ {z}, I∗ := I ∩H∗ ×M . If z�� ∩EI∗I∗ 6= ∅, then E ∪ {z} is a box
extent of the subcontext (H∗,M, I∗) and the conditions

(
z�� ∩H∗

)
\ {z} ⊆ E,

(E ∪ {z})I∗I∗ = E ∪ {z} hold.

Proof. Clearly, E is a box extent of the subcontext (H,M, I ∩H ×M). Since
EI∗I∗ ⊆ EII ⊆ BII = B, by our assumption, we have z�� ∩ B 6= ∅. Since B is a
box extent of K, it is a union of some classes of the finest extent partition π� of
K and, hence, z�� ∩B 6= ∅ yields z ∈ z�� ⊆ B. Thus, we obtain:

B ∩H∗ = B ∩ (H ∪ {z}) = (B ∩H) ∪ {z} = E ∪ {z},

and hence E ∪ {z} is a box extent of (H∗,M, I∗). Then (E ∪ {z})I∗I∗ = E ∪ {z}
also holds. Now, suppose by contradiction that

(
z�� ∩H∗

)
\ {z} " E. Then,

there is a g ∈ z�� ∩ H∗, g 6= z with g /∈ E. However g ∈ H∗ \ {z} = H yields
g ∈ z�� ∩H ⊆ B ∩H = E, which is a contradiction. Thus,

(
z�� ∩H∗

)
\ {z} ⊆

E. �
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Remark 3.6. Assume now that conditions of Proposition 3.5 are satisfied, let
π∗� stand for the finest extent partition of the context K(H∗) = (H∗,M, I∗) and
denote the class of the element z in π∗� by z��∗ and its class in π� by z��.
We show that, during the construction of the box extents of K = (G,M, I) by
successive one-object extensions, z��∗ can be replaced by z�� in checking the
condition z��∩EI∗I∗ = ∅,

(
z�� ∩H∗

)
\{z} ⊆ E, (E ∪ {z})I∗I∗ = E∪{z} (where

E ⊆ H∗), respectively, and this will not alter the list of the box extents obtained.
Indeed, π∗� is a refinement of the restriction of π� toH∗, hence z��∗ ⊆ z��, and

z��∗ \ {z} ⊆
(
z�� ∩H∗

)
\ {z}. Then, z�� ∩ EI∗I∗ = ∅ implies z��∗ ∩ EI∗I∗ =

∅, and in view of Theorem 3.3 this means that E is a box extent of K(H∗); if(
z�� ∩H∗

)
\ {z} ⊆ E, then z��∗ \ {z} ⊆ E and by Theorem 3.3 we get that

E ∪ {z} is a box extent of K(H∗). Hence, all the box extents found belong to
K(H∗). As the successive extensions are ending with (G,M, I), the box extents
obtained in the last step are box extents of (G,M, I).

Conversely, let B be a box extent of K, as in Proposition 3.5. Then, B∩H = E
is a box extent of (H,M, I ∩ H × M) and, in view of Lemma 3.1, it can be
extended into B by successive one-object extensions. In order to prove that each
box extent of K is found by using our new conditions, assume that neither E nor
E ∪ {z} is decided to be a box extent by checking our conditions for an extension
with z ∈ G \ H. Then, necessarily, z�� ∩ EI∗I∗ 6= ∅. However, in view of
Proposition 3.5, B∩H = E and z��∩EI∗I∗ 6= ∅ imply

(
z�� ∩H∗

)
\{z} ⊆ E and

(E ∪ {z})I∗I∗ = E∪{z}. The last two relations mean that E∪{z} is recognized as
a box extent of the context K(H∗) by our new method, contrary to the assumption.
This contradiction shows that all the box extents of K are generated by checking
the new, modified conditions.

Now, based on Propositions 3.4 and 3.5, and Lemma 3.1, we present an improved
method for determining the box extents of a context by successive one-object
extensions, eliminating the above-mentioned problems. Its steps are the following:
• First we select atomic objects, i.e., those g ∈ G from the context K = (G,M, I)
for which (gII , gI) is an atom and we store them in a list H0.

• We construct the context K0 := (H0,M, I ∩ H0 ×M) and the concept lattice
L(H0,M, I ∩H0×M) using some well-known method (see, e.g., [7]). In view of
Lemma 2.3, the extent lattice E(H0,M, I ∩H0 ×M) and its box extent lattice
BE(H0,M, I ∩H0 ×M) are identical. Thereafter, the finest extent partition π�
of K = (G,M, I) is also constructed.

• Now, we add the remaining elements zj ∈ G \ H0 (j = 1, ..., n) one by one to
the actual subcontext Kj−1 := (Hj−1,M, I ∩ Hj−1 ×M), determining in each
step the box extents of the new context Kj := (Hj ,M, I ∩ Hj × M) (where
Hj := Hj−1 ∪ {zj}) by using the class z��

j of zj in the extent partition π� and
the list of the box extents of Kj−1.

The last inductive step is carried out by the following algorithm:

Algorithm 3.7. Algorithm for determining the list L of the box extents of
K given the set H0 of atomic objects, the list E0 of the box extents of K0 :=
(H0,M, I ∩H0 ×M), and the list of the box extents contained in π�.
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begin
S := E0, H := H0
while G \H 6= ∅ do

H := H ∪ {z}, z ∈ G \H
I∗ := I ∩H ×M , L∗ := {z�� ∩H}
for E ∈ S do

if EI∗I∗ ∩ z�� = ∅ then L∗ := L∗ ∪ {E}
if z�� \ z ⊆ E then E∗ := E ∪ {z}

if (E∗)I∗I∗ = E∗ then L∗ := L∗ ∪ E∗
end if

end if
end for
S := L∗

end while
L := S

end

It is known that the lattice L0 := L(H0,M, I ∩H0 ×M) can be constructed in
O(| H0 |2|M || L0 |) steps (see, e.g., [5]) and π� can be computed inO(| G |2|M |)
(see [2]) steps. In the worst case (when every g ∈ G is an atomic object) H0 = G
and, hence, O(| H0 |2| M || L0 |) = O(| G |2| M || L0 |). As in each step of the
above inductive part at most | L0 | extents are examined, the box extents of the
whole context can be checked in at most O(| L0 || G |) steps. Thus, in total, we
need at most
O
(
| G |2|M || L0 |

)
+ O

(
| G |2|M |

)
+ O (| L0 || G |) = O

(
| G |2|M || L0 |

)
steps. In the worst case, O(| L0 |) is the same as O(| L(G,M, I) |).

It is also clear that, in each step, the number of the box extents cannot increase,
because a box extent of a subcontext (H,M, I ∩ H ×M) is either preserved by
a one-object extension or extended with the new element or it disappears and
these cases exclude each other according to Proposition 3.4. Therefore, (denoting
the set of atomic objects by A), we obtain

| BE(G,M, I) |≤| L(A,M, I ∩A×M) | .
The next theorem states even more:

Theorem 3.8. Let K = (G,M, I) be a finite formal context and S ⊆ G a subset
containing all the atomic objects of K. Then, the box extent lattice of K can be
order-embedded in the lattice BE(S,M, I ∩ S ×M).

Proof. Since, in view of [2, Cor. 4.4], for any box extent E of K, E ∩S is a box
extent of the subcontext KS := (S, M, I ∩ S ×M), we can define the mapping

ϕ : BE(G,M, I)→ BE(S,M, I ∩ S ×M), ϕ(E) = E ∩ S, E ∈ BE(G,M, I).
Obviously, ϕ is order-preserving. In order to prove that ϕ is an order-embedding,
suppose that ϕ(E1) ⊆ ϕ(E2) for some E1, E2 ∈ BE(G,M, I). Then, E1 ∩ S ⊆
E2∩S, E1∩E2 ∈ BE(G,M, I), and ϕ(E1∩E2) ⊆ ϕ(E1). Assume that E1∩E2 6= E1.
This means that there exists an element z ∈ E1 \ (E1 ∩ E2). Now, let us define
the sets H := S ∪ (E1 ∩ E2) and H∗ := H ∪ {z} = S ∪ (E1 ∩ E2) ∪ {z} and
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consider the corresponding subcontexts KH = (H,M, I ∩ H × M) and KH∗ =
(H∗,M, I ∩H∗×M). Clearly, KH∗ is obtained from the subcontext KH by a one-
object extension using the object z, and E1∩E2 = (E1∩E2)∩H = (E1∩E2)∩H∗
is a box extent of both contexts.

On the other hand, E1 ∩ S = (E1 ∩ S) ∩ (E2 ∩ S) ⊆ E1 ∩ E2 yields
E1 ∩H∗ = E1 ∩ (S ∪ (E1 ∩ E2) ∪ {z}) = (E1 ∩ S) ∪ (E1 ∩ E2) ∪ {z}

= (E1 ∩ E2) ∪ {z},
and, hence, (E1 ∩ E2) ∪ {z} is a box extent of (H∗,M, I ∩H∗ ×M). Therefore,
after a one-object extension of the context KH , both E1 ∩E2 and (E1 ∩E2)∪ {z}
become box extents in the wider context KH∗ . Since the set H ⊇ S contains all
the atomic objects of the initial context K, this is not possible by Proposition 3.4.
This means that E1 ∩ E2 = E1 must hold and hence E1 ⊆ E2. Thus, ϕ is an
order-embedding. �
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