ISSN 1805-3610  (Print)
ISSN 1805-3629  (On-line)

DOI prefix: 10.13164/ma

Editorial Board

Instructions to Authors


Publication Ethics and Publication Malpractice Statement


Mathematics for applications publishes original papers of a high scientific level in all branches of mathematics with an emphasis on applications of results in mathematics itself and other disciplines. Published by the Institute of Mathematics of Brno University of Technology since 2012, this international journal builds on Publications of Technical and Scientific Papers of the Technical University of Brno (ISBN: 80-214-020-X), a renowned journal published by the University until 1990's. It had provided a platform for the international mathematical community to publish research papers and, after its disappearance, we decided to found a new mathematical journal to continue this service. 
Issued biannually on an open-access basis, the journal has English as the only language of communication.

 Mathematics for Applications
 Institute of Mathematics
 Faculty of Mechanical Engineering
 Brno University of Technology
 Technická 2896/2
 616 69 Brno
 Czech Republic

  Recent Volumes :  
   Vol 10. (2021):  No. 1      
   Vol 9.   (2020):
  No. 1    No. 2    
   Vol 8.   (2019):  No. 1    No. 2
   Vol 7.   (2018):  No. 1    No. 2
   Vol 6.   (2017):  No. 1    No. 2
   Vol 5.   (2016):
  No. 1    No. 2
   Vol 4.   (2015):  No. 1    No. 2
   Vol 3.   (2014):
  No. 1    No. 2
   Vol 2.   (2013):  No. 1    No. 2
   Vol 1.   (2012):  No. 1    No. 2

Latest Issue

Vol. 10. No. 1. (2021)

I. Chajda and M. Kolařík
Sheffer operations in complemented posets
DOI: 10.13164/ma.2021.01

H. Damak, M. A. Hammami and A. Kicha
h-stability and boundedness results for solutions to certain nonlinear perturbed systems
DOI: 10.13164/ma.2021.02

K. K. Haugen
The manager sack race game
DOI: 10.13164/ma.2021.03

A. O. Isere, J. O. Adéníran and T. G. Jaiyéolá
Latin quandles and applications to cryptography
DOI: 10.13164/ma.2021.04

L. I. Petrova
Duality of conservation laws and their role in the processes of emergence of physical structures and formations
DOI: 10.13164/ma.2021.05

S. Radeleczki and L. Veres
An incremental method for the construction of the box extents of a context
DOI: 10.13164/ma.2021.06

J. Šremr
Bifurcation of positive periodic solutions to non-autonomous undamped Duffing equations
DOI: 10.13164/ma.2021.07